retour en haut

Actualité

Les constellations de satellites de télécommunications : des origines à nos jours

08/04/2021

En matière de radiocommunications, les ingénieurs ont toujours privilégié les points hauts pour installer les émetteurs et récepteurs : prendre de la hauteur permet de couvrir des zones très larges et ainsi de réduire les coûts de déploiement. La conquête spatiale a créé la possibilité de placer des émetteurs-récepteurs sur des satellites artificiels qui survolent la Terre dans l’espace extra-atmosphérique, et ouvert ainsi de nouvelles perspectives pour les communications longue distance. C’est en 1960 que le premier « satellite de télécommunications », Echo I, simple réflecteur, est lancé. Ses successeurs vont, quant à eux, rapidement embarquer des récepteurs et émetteurs capables d’amplifier le signal reçu avant de le retransmettre. Les projets de constellations de satellites de télécommunication ne datent pas d’hier, et sont même apparus il y a plus de 60 ans !

Les années 1960 : la naissance. 

Le tout premier projet de constellation de satellites est né en 1960 avec le projet Telstar développé par la société américaine AT&T. L’objectif était de tester l'utilisation d'un satellite pour les communications longue distance. Il devait comprendre 80 à 120 satellites de télécommunications de conception très simple, placés en orbite moyenne et lancés par grappes de 12 satellites. Plusieurs stations terrestres furent construites et un premier satellite a été lancé, mais le projet n’a finalement jamais abouti. C’est en 1964 que le premier satellite de télécommunications, Syncom 3, est placé en orbite géostationnaire. Sur cette orbite, le satellite se déplace de manière exactement synchrone avec la planète et reste constamment au-dessus du même point de la Terre. Le principal avantage est que les paraboles d’émission et de réception au sol sont orientées en permanence vers le même point du ciel ; elles n’ont pas besoin d’un dispositif mécanique pour suivre la trajectoire d’un satellite dans l’espace. Cette position, qui correpond à une altitude de 36 000 km, permet de voir un tiers du globe terrestre ; trois satellites suffisent pour une couverture presque globale, à l’exception des pôles. En contrepartie, le temps de transmission devient nettement perceptible : 300 millisecondes pour une communication Terre-satellite-Terre, ce qui handicape certaines applications de télécommunications qui nécessitent une faible latence.

Les années 1990 : un retour difficile 

Les projets de constellations renaissent dans les années 1990, d’abord pour la téléphonie mobile par satellite avec Iridium, ICO Global Communications et Globalstar. Mais ces sociétés vont connaitre des difficultés financières : Iridium sera racheté par le Département de la Défense américain à un prix extrêmement bas et ICO Global Communications déposera le bilan avant même d'avoir lancé son premier satellite.

Puis apparaissent les grandes constellations du très haut débit fixe avec Teledesic et Skybridge. Mais aucun de ces projets ne verra le jour ! Cependant, le projet Skybridge va conduire l’ UIT à définir une réglementation internationale pour permettre le partage des fréquences entre grandes constellations d’une part, et satellites géostationnaires d’autre part. 

Ces échecs peuvent être imputables en partie à l’explosion des communications haut débit fixe et mobile terrestres au même moment, qui a bouleversé les plans d’affaires, nécessitant des investissements importants. 

Ce sont finalement les satellites géostationnaires qui ont trouvé leur marché. En effet, ils permettent d’une part une couverture complète des territoires, difficile à atteindre par des moyens terrestres uniquement, et d’autre part de fournir des services très haut débit aux bateaux et avions. Ils ont donc ainsi leur place dans l’offre de services de communication très haut débit aux particuliers et aux entreprises. 

Les satellites sont dorénavant perçus comme complémentaires des réseaux terrestres. De nouveaux projets de constellation voient le jour pour compléter, et parfois concurrencer, le marché des satellites géostationnaires. 

Les années 2010 : les constellations non géostationnaires

En juin 2013, les quatre premiers satellites de la constellation O3b sont lancés. O3b est l’acronyme de « other 3 billion », en référence aux trois milliards d’habitants de la planète ne disposant pas encore d’internet. Il s’agit d’une constellation en orbite moyenne à 8 000 km d’altitude dans le plan équatorial, fonctionnant en bande Ka. Aujourd’hui, vingt satellites construits par Thalès Alenia Space, sont en orbite et d’autres ont été commandés. 

OneWeb est, quant à lui, un projet de constellation d’environ 600 satellites en orbite basse à 1 200 km d’altitude, en bande Ku pour les liaisons avec les utilisateurs finaux et en bande Ka pour les liaisons avec les stations passerelles. Il comporte actuellement 110 satellites en orbite construits par une société commune entre Airbus et OneWeb. 

Le géant américain Starlink de la société SpaceX a, quant à lui, déjà déployé 1 152 satellites et prévoit à terme 12 000 satellites. 

Amazon envisage également le déploiement de 3 236 satellites dans le cadre de son projet Kuiper. 

En février 2021, Thalès Alenia Space a été sélectionné pour construire la constellation de 298 satellites du canadien Telesat. 

Enfin, la Commission Européenne a annoncé un projet de constellation souveraine européenne pour renforcer l’autonomie stratégique de l’Union Européenne. En décembre 2020, elle a sélectionné un consortium composé d’Airbus, Arianespace, Eutelsat, Hispasat, OHB, Orange, SES, Telespazio et Thalès Alenia Space afin d’étudier la conception, le développement et le lancement d’un système spatial européen indépendant de communications. 

Un fonctionnement efficace 

Les satellites communiquent d’une part avec les stations passerelles (gateways), qui assurent l’interconnexion avec les réseaux terrestres et, d’autre part, avec les terminaux des utilisateurs finaux, de plus petite taille, chez les particuliers ou les entreprises. Comme pour les faisceaux hertziens terrestres qui fonctionnent dans les mêmes bandes de fréquences, la largeur du cône d’émission est très étroite, quelques degrés à peine. Cette forte directivité des antennes permet de partager les bandes de fréquences entre plusieurs constellations de satellites, avec les réseaux à satellites géostationnaires ainsi qu’avec les réseaux terrestres. 

La complexité des satellites et des équipements associés au sol varie d’une constellation à l’autre. Certains fonctionnent comme des satellites classiques, retransmettant directement vers une passerelle les signaux reçus d’un utilisateur. D’autres sont plus sophistiqués et assurent un traitement du signal à bord, ainsi que des liaisons inter-satellite. Ces liaisons inter-satellites permettent de déployer un véritable réseau maillé dans l’espace, et les communications n’ont plus besoin de transiter par certains territoires. Néanmoins, l’ensemble des données échangées entre les utilisateurs et les satellites doivent redescendre sur Terre : les constellations, comme les satellites géostationnaires de forte capacité, ont besoin de nombreuses stations passerelles pour assurer ce flux. 

Certaines des fréquences de ces constellations ont été déclarées par la France à l’ UIT . C’est le cas des fréquences de la constellation Globalstar, d’une partie des fréquences de OneWeb et O3b. D’autres droits français enregistrés par l’ANFR à l’ UIT pourraient s’avérer intéressants pour les futurs projets de constellations. De son côté, l’ARCEP délivre les autorisations pour les opérateurs, comme elle vient de le faire pour les terminaux et les passerelles de la constellation Starlink/SpaceX en France. 

En matière de constellation, certains voient déjà plus loin. Ainsi, l’Agence Spatiale Européenne étudie une constellation de satellites autour de la Lune afin de développer les capacités de communication et de radionavigation dans le cadre du projet Moonlight et de faciliter les prochaines missions sur la Lune. 

[OPENDATA] C’est vendredi ! Retrouvez la MAJ de nos données #opendata. Aujourd’hui, focus sur @VilleLimoges87 où 51 sites #5G ont été autorisés, dont 38 sont techniquement opérationnels (activés). https://t.co/cr2xaQiCM7 https://t.co/vEmddXgZ15

#25AnsANFR🎂 #1jour1date le 30 août 2018, l’ @anfr lance son appli #OpenBarres (en version Android). Elle permet d’identifier le niveau de signal de son réseau mobile sur un parcours donné, d’être informé de l’état du déploiement de la #5G et du #DAS de son 📱. ©M.Chalvin https://t.co/zxmn89g2S8

ANFR a Retweeté

📺 Comment reçoit-on la #télévision en France et en Europe ? La dernière vague de l’observatoire de l’équipement des foyers métropolitains est en ligne. Une étude #ObsTV2022 menée en partenariat avec la #DGMIC et l’@ANFR 🔽 #VendrediLecture

Perturbation de la #TNT en @seinemaritime suite à une panne technique sur l’émetteur: ROUEN / GRAND-COURONNE. Des interventions du diffuseur TDF sont en cours pour résoudre le problème. Plus d'information https://t.co/6ENh9x0Qlc https://t.co/hXy2uEoyA3

#25AnsANFR🎂 #1jour1date Septembre 2017 : l’antenne locale de l’ANFR aux Antilles vient en soutien des services de l’Etat pour le redéploiement des réseaux hertziens (téléphonie mobile et radiodiffusion) mis à mal après la tempête Irma🌪️. ©M.Chalvin https://t.co/5BzR9mJ2Yy

#25AnsANFR🎂 #1jour1date Le 5 avril 2016, c’est le passage à la #TNT HD ! L’@anfr lance une campagne d’information incitant les téléspectateurs à se munir d’un téléviseur ou d’un adaptateur compatible HD pour continuer à recevoir la TNT. ©M.Chalvin https://t.co/jhZ2jEvCUR

#EU5GConf Lors de la session sur les verticaux, Eric Fournier évoque la connectivité 5G pour des applications locales (industrie, media, transport/logistique, agriculture) : de futures bandes harmonisées à 4 GHz (autorisations générales) et à 6 GHz (autorisations individuelles) ? https://t.co/jHAlKKS9Df

.@GillesBregant , DG de l’@ANFR et Eric Fournier, Directeur de la planification du spectre et des affaires internationales, interviennent aujourd’hui à la Conférence européenne sur la #5G.
Pour plus d'informations et pour suivre l'événement ⤵️
https://t.co/H1y3WdS2Kg #EU5GConf https://t.co/f34OdNz3d8

« Ce n’est pas la 5G qui perturbe les radioaltimètres, ce sont plutôt ces derniers qui sont mal préparés à l’apparition de la 5G » ⁦⁦@GillesBregant⁩ 👇 https://t.co/oOZlPcoH2b

#25AnsANFR🎂 #1jour1date le 2 avril 2015, l’@anfr publie ses 1ers jeux de données en #opendata sur le site gouvernemental https://t.co/vM0dSfHuVG. Ces données ouvertes donneront lieu à l’organisation de hackathons annuels dédies aux fréquences : « les Fr’Hacks » ©M.Chalvin https://t.co/ua8HBlCVpX

[in English] The ANFR has published in English the first results of measurement of public exposure to waves carried out before and after the #5G roll out in 1500 sites in France.

https://t.co/Qjw8jrhyoZ https://t.co/cRFojVtYwd

L’ANFR est intervenue la semaine dernière à Lorient avec la @DGA sur la future frégate de la @MarineNationale, la FREMM Lorraine, pour vérifier les nombreux systèmes de transmission par fréquences, à l’approche des 1ers essais en mer https://t.co/CgIMi2hmaH

#25AnsANFR🎂 #1jour1date 29 janvier 2015 : la Loi dite « Abeille » (Loi sur la sobriété, la transparence, l’ information et la concertation en matière d’exposition aux ondes) confie à l’ANFR de nouvelles missions, notamment le recensement des points atypiques ©M.Chalvin https://t.co/vAWYLalkQz

🎙️Retrouvez l’intervention de @gillesbregant, DG de l’@anfr, ce matin sur @Franceculture pour répondre à la question « la 5G peut-elle perturber le trafic aérien ? »
L’intégralité de l’interview en replay : La 5G peut-elle perturber le trafic aérien ? ⤵️https://t.co/Jg4TeCENXs https://t.co/9x5S4ADyAZ

#25AnsANFR🎂 #1jour1date Depuis le 1er janvier 2014, l’@ANFR gère le dispositif national de contrôle et de mesures des ondes, qui permet aux particuliers et aux collectivités de faire des demandes de mesures d’exposition. ©M.Chalvin https://t.co/x7GMziudNi

#25AnsANFR🎂 #1jour1date 1er novembre 2012 : l’@ANFR autorise les 1ères implantations de sites 4G et publie son 1er #observatoire du déploiement des réseaux mobiles, qui rend le processus de déploiement des opérateurs mobiles plus transparent. ©M.Chalvin https://t.co/YUIv3Sgj1h

ANFR a Retweeté

L’oreillette divise par 10 votre exposition aux ondes des smartphones https://t.co/OI9xOJyDma

#25AnsANFR🎂 #1jour1date 8 mai 2012 : refonte des certificats radioamateurs français en un seul certificat « HAREC », qui permet une reconnaissance avec les certificats étrangers et autorise le mode numérique. ©M.Chalvin https://t.co/xDRLTuVTvh

ANFR a Retweeté

Pour le bon réseau, je vous renvoie à cette étude de l'@anfr: appeler dans de bonnes conditions peut diviser le niveau d'exposition... par 32.000.

Donc on évite les coups de fil dans le train. En plus ça énerve tout le monde.

https://t.co/WANe44JtCS

ANFR a Retweeté

Avions et 5G : pourquoi la France a moins de soucis que les États-Unis https://t.co/oiAsMf4vqP https://t.co/teDIvyqRyK

Nous avons un problème

Une erreur est survenue, merci de contacter un administrateur

Recevez l'actualité de l'anfr

> Modifier votre profil