Accessibilité

retour en haut

Actualité

La recharge électrique : l’autre front du « sans fil »

02/06/2020

Conceptualisée dès le XIXe siècle, la transmission d’énergie sans fil (Wireless Power transmission dite WPT) est en passe aujourd’hui de se banaliser. Les chargeurs sans fil se répandent, pour les smartphones comme pour les objets connectés, montres ou écouteurs Bluetooth. Mais, dans notre quotidien, les équipements à recharger prolifèrent encore plus vite : au-delà des smartphones et de l’électronique domestique grand public, les véhicules, les appareils électro-ménagers, les équipements industriels ou médicaux fonctionnement eux aussi de plus en plus sur batterie. Le WiFi a fait disparaître les câbles Ethernet ; les batteries ont aboli les fils électriques ; reste désormais à éradiquer un dernier fil : celui qui relie, quelques heures par jour, ces objets à… leur chargeur !

En quoi consiste le transfert d’énergie sans fil ?

Le transfert d’énergie sans fil regroupe un arsenal de technologies qui permettent de faire passer suffisamment d’énergie à travers des ondes électromagnétiques. Champ proche ou lointain, avec ou sans utilisation de faisceaux, couplage inductif ou capacitif, résonance magnétique, magnétodynamique, micro-ondes, voire ondes lumineuses… L’idée commune à tous ces procédés consiste à coupler un émetteur, capable de convertir de l’énergie en ondes, à un récepteur, qui les capte pour en faire du courant – et alimente alors la batterie. Le système doit aussi transmettre l’information nécessaire pour bien réguler ce transfert d’énergie. L’information peut utiliser les mêmes fréquences que celles qui transmettent l’énergie ou passer par un autre canal, par exemple via le Bluetooth.

Deux technologies dominent aujourd’hui le transfert d’énergie :

  • Le couplage inductif, qui fonctionne à très courte distance et sans focalisation : il est largement utilisé pour les appareils grand public, et notamment pour la recharge des smartphones. Une bobine primaire et une bobine secondaire sont simplement couplées par induction électromagnétique. La difficulté avec ce procédé est que rendement de la transmission d'énergie s’effondre lorsque la distance entre les bobines augmente.
  • La résonance magnétique, qui permet des distances plus grandes. Cette technique repose sur une bobine et un condensateur qui fait office de résonateur. L'énergie électrique est transmise par résonance électromagnétique entre la bobine de l'émetteur et celle du récepteur. Ce procédé s’accommode ainsi de plus grandes distances. Le couplage magnétique entre les deux bobines peut en effet être faible, à condition que les fréquences de résonance se correspondent entre les deux bobines. Cette technique donne donc plus de souplesse quant à la disposition entre le chargeur et l’appareil à charger. C’est pourquoi les prototypes pour véhicules électriques la privilégient.


En termes de fréquences, les WPT dits génériques (hors véhicules électriques) se situent toujours dans des bandes de fréquences inférieures à 30 MHz. Pour les WPT destinés aux véhicules électriques (dits WPT –EV), seule la portion 79-90 kHz est prise en compte en Europe.

Une variété d’applications presque illimitée

Le système WPT peut s’appliquer à tout appareil électrique comportant des batteries. Deux grandes familles sont distinguées, entre WPT dédiés aux véhicules électriques (WPT-EV) et tous les autres (WPT génériques).

WPT génériques

  • Applications électronique grand public
    - De faible puissance (inférieure à 15 W) : c’est ici que se trouvent les chargeurs de smartphone, mais aussi la plupart des appareils électroniques à faible consommation.
    - De moyenne puissance (entre 30 et 800 W) : ils sont adaptés aux outils électriques portatifs, des tondeuses à gazon aux vélos électriques, en passant par les drones.
    - De haute puissance (jusqu’à 2400 W), car des grille-pain ou des machines à café sans fil sont en effet en projet !
  • Applications industrielles de haute puissance inférieure à 50 kW : cet usage convient par exemple à la recharge permanente d’un robot se déplaçant dans un environnement industriel le long d’une route prédéfinie.
  • Applications médicales
    - De faible puissance (inférieure à 0,5 mW) : le principal usage est celui des neuromodulateurs, destinés à réguler le fonctionnement de certains neurones.
    - La seconde classe, plus puissante, correspond à tous les autres dispositifs médicaux implantables, comme les implants auditifs.


WPT-EV

  • De moyenne puissance (inférieure à 22 kW) : pour les voitures particulières de tourisme.
  • Et de haute puissance (jusqu’à 200 kW) : par exemple pour des autobus ou des camions.


Vers un cadre réglementaire adapté

Etant donné l’extrême diversité des appareils à recharger, ces chargeurs sans fil seront bientôt des millions voir des dizaines de millions en France. En outre, chaque recharge suppose des heures, voire des dizaines d’heures d’utilisation… Tous ces chargeurs vont donc bientôt occuper en permanence la ressource spectrale qui leur est associée ! Le transfert d’énergie sans fil ne passera donc pas inaperçu dans le monde des fréquences, par ses émissions intentionnelles ou parasites.

En Europe ces appareils sont considérés comme des appareils à faible portée et sont donc couverts, pour leur mise sur le marché, par la directive européenne des équipements radioélectriques (Directive 2014/53/UE dite RED). Le sujet est aussi examiné par l’industrie sous l’angle de la compatibilité électromagnétique (CEM). La mise sur le marché serait alors couverte par la directive européenne concernant la compatibilité électromagnétique (Directive 2014/30/UE dite EMCD). 

L’ANFR est donc aujourd’hui engagée dans le processus de règlementation à la CEPT et le suivi de certains travaux normatifs, dont ceux de l’institut européen de normalisation des télécommunications (ETSI) et ceux de la commission électrotechnique internationale (IEC).  Cet engagement se révèle en effet indispensable pour assurer une cohérence entre le cadre réglementaire définissant les conditions d’utilisation des fréquences et les normes applicables aux équipements radioélectriques. 

5G : manifestement @lamontagne_fr ne connaît pas l’existence du comité national de dialogue de l’@anfr sur le sujet ; dommage, dans un sujet qui devient caricatural et polémique c’est un espace d’échanges fondés et apaisés. #PeutMieuFaire https://t.co/DY1b5jc6PE

Nous sommes à la recherche de nouvelles idées pour l’application mobile Open Barres : https://t.co/AcNhBHz3Ad 💡💡 Participez à un atelier d’idéation en direct de chez vous, une première !
📅 du 5 au 16 octobre en 4 sessions de 2 heures. Inscrivez-vous 👇
https://t.co/O5UeSvpJJQ https://t.co/rkBfmOdKmV

#5G : où se trouvent les 500 antennes déjà en test sur le territoire ? #cartoradio https://t.co/BTyvjreisJ

L' @anfr simule l'exposition aux ondes causée par des antennes 4G et 5G et livre ses résultats :
▶️Sans #5G, l'ANFR indique que l'exposition du public aux ondes continuerait inexorablement d'augmenter.»
https://t.co/veEfbLXVvK

Les équipes de l’@anfr en action pour résoudre un brouillage qui empêche le bon fonctionnement d’une caméra HF 🎥 pendant les @24hdumans . https://t.co/5ILG7M8N9O

ANFR a Retweeté

Le numérique est le 1er secteur créateur d’emploi en 🇫🇷. Il doit continuer à innover. Se passer de la #5G est destructeur pour l’emploi et l’attractivité. Discutons d’une meilleure information et d’un renforcement des contrôles d’exposition sur le terrain. https://t.co/IJ1Kdtm6tK https://t.co/wlQc4e021L

Évolution de l'exposition aux ondes avec l'arrivée de la 5G : l'ANFR fait le point https://t.co/FMP3yRk6Bb https://t.co/5lnJnzlcvj

.@GillesBregant 🗣️«La 5G va démarrer en 🇫🇷 dans la bande 3,5 GHz, à partir d’antennes déjà existantes 2G, 3G, 4G… Donc, le sujet des antennes multiples installées partout n’est pas du tout d’actualité »Retrouvez l’émission #VraiouFake de @franceinfo ici👇https://t.co/KfvNDRljAT https://t.co/sRSrpljvCD

🗣️📺Rendez-vous ce soir à 21h pour l'émission "vrai ou fake" de @franceinfo sur la #5G : le DG de l'@anfr @GillesBregant est l'invité, il apportera son expertise sur cette nouvelle technologie. https://t.co/t6Kwb7e1Mw

📺 Au #JT de 20h hier sur @TF1 l’expertise de mesure des #ondes de l’@anfr a été présentée : comment mesure-t-on l’exposition aux ondes due à la #5G ? Quels résultats trouve-t-on ? Le reportage 📽️ : https://t.co/hJ7cGt08oX https://t.co/aRRkQtkt3v

ANFR a Retweeté

La France possède l’un des cadres de contrôle de l’exposition aux ondes parmi les plus exigeants du monde. Plus de transparence et plus de contrôles de l’@anfr 👉 Cette sécurité s’appliquera avec encore plus de rigueur avec la #5G.

ANFR a Retweeté

Le rapport inter-inspections sur l'exposition aux ondes #5G et les pratiques internationales remis à @BrunoLeMaire, @barbarapompili, @olivierveran et moi-même permet de poser les bases d'un débat rationnel et scientifique.
👉 https://t.co/VzlBL6YiUU

Que retenir de ce rapport 3️⃣? L’augmentation de l’exposition due à la #5G en bande 3,5 GHz resterait modérée, du fait des antennes à faisceaux orientables.
+ d’infos en consultant le rapport i ci : 👇https://t.co/QPCr4ivJrv https://t.co/WxXHl3CPgB

Que retenir de ce rapport 2️⃣? Même dans une configuration maximaliste, les niveaux resteraient faibles au regard des valeurs limites d’exposition : 2,30 V/m en moyenne en extérieur.
+ d’infos en consultant le rapport : 👇
https://t.co/8G16xX1ijf https://t.co/EBFrtFTIiz

Que retenir de ce rapport 1️⃣? Sans #5G, l’exposition du public aux ondes devrait continuer d’augmenter ( + 70 %) pour répondre à la demande croissante de connectivité mobile en zone dense.
+ d’infos en consultant le rapport : 👇https://t.co/CqpX2bWiK6 https://t.co/1nLSpc4pTS

Nous avons un problème

Une erreur est survenue, merci de contacter un administrateur

Recevez l'actualité de l'anfr

> Modifier votre profil