NOKIA

On the road to

Use cases, technology & EMF standardization

Christophe Grangeat, 5G & SC Architecture Solutions, Senior specialist RF exposure & energy efficiency Alistair Urie, Nokia Bell Labs, Advanced RAN architecture director 2019-04-16

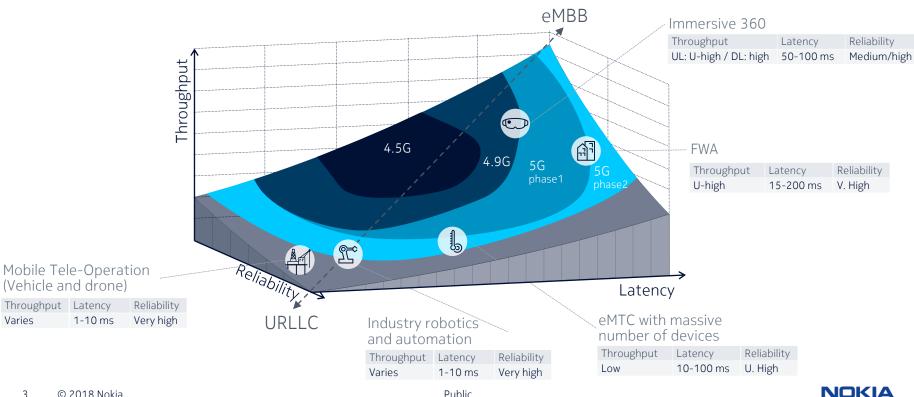
On the road to 5G use cases

1 Video surveillance & analytics

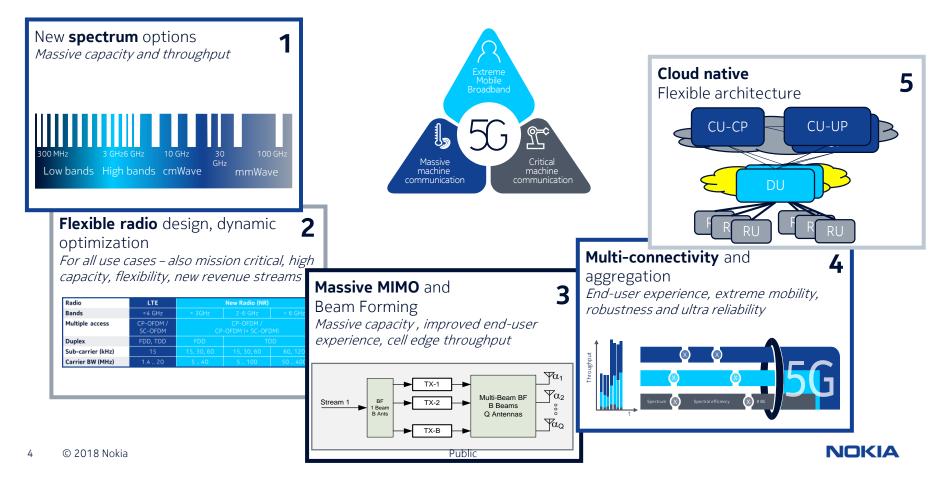
2 Machine remote control

3 Assisted & autonomous vehicles

4 Cloud robotics & process automation


7 Immersive experience

8 Smart Stadium



Requirements driven by use cases Evolution of throughput, reliability and latency

Varies

Technology enablers for 5G New Radio (NR) interface and RAN

Spectrum: 5G bands from 300 MHz to 100 GHz

More A lot more X More cell sites = More spectrum x beamforming capacity First bands Bandwidth **Beam size** Cell density Capacity 100 GHz -Very small mm Ultra high Very dense Up to 2 GHz 3 mm waves capacity booster small cell 39 GHz 30 GHz _ cm/mm 26/28 GHz Small antenna Capacity 1 cm Up to 400 MHz Dense small cell waves Narrow beams booster 24-40 GHz 10 GHz -3.5 GHz Medium antenna **Coverage and Urban Macro** 3-6 GHz Up to 100 MHz Medium beams and small cell high capacity 3 GHz -600-900 MHz 10 cm Coverage and All Macro and Large antenna 300 MHz <3 GHz Up to 20 MHz Wide beams urban small cell new services 1m

Note: ITU-R is not considering bands between 6 and 24 GHz for IMT2020

5 © 2018 Nokia

1. Spectrum

Public

NOKIA

Different spectrum for different use cases 3 key spectrum ranges start to emerge

	Spectrum range	Bands	Coverage	Peak Data rates	Bandwidth	Use Cases
Cell range	Low band < 1 GHz	• 600 MHz (US) • 700 MHz • 900 MHz	• Deep indoor • ~ 10 km	~100 Mbps	FDD 2x10 MHz	 Deep indoor coverage for sensors and IoT (mMTC) TMO US started to promote also MBB
	Mid-band 3 – 6 GHz	• 3.4-3.6 GHz (B42) • 3.6-3.8 GHz (B43) • 4.5-4.9 GHz (JPN)	• Same grid as LTE1800 • ~1 km	~1 Gbps	TDD <100 MHz	 5G eMBB coverage on LTE grid Major commercial 5G launches are expected in this spectrum range (JPN, KRN, CHN, EUR)
Data rate	mmWaves > 24 GHz	• 26 GHz (EUR) • 28 GHz (KOR, US) • 39 GHz (US)	• Hot spots • Line of sight • 100 m	~10 Gbps	TDD <1 GHz	 Extreme data rates for e.g. VR in local areas like stadiums Used in US due to lack of 3-6 GHz Used also in KOR Olympics trial

Global snapshot of 5G spectrum

Around the world, there is a pattern of band allocation

New 5G band Licensed Unlicensed/shared Existing band

	<1(GHz 30	GHz 4GHz	5GH	z	24-28GHz	37-4	0GHz	64-71GHz
٩	600MHz (2x35MHz)	2.5GHz (LTE B41)	3.5GHz (150MHz)		5.9–7.1GHz	27.5-28.35GHz	37-37.6	GHz	64-71GHz
(*)	600MHz (2x35MHz)	, 	3.5GHz (150MHz) ◀►		5.9–7.1GHz	27.5-28.35GHz	37-37.6 37.6-40	GHz GHz	64-71GHz
	700MHz		3.4–3.8GHz		5.9-6.4GHz	24.5-27.5GHz			
			3.4–3.8GHz			26GHz, 28GHz		1	
			3.4–3.7GHz			26GHz, 28GHz ◀ - ►			
0			3.46 –3.8GHz			26GHz ◀ - ►			
0		1 1 1 1	3.6–3.8GHz	 				1	
*			3.3 –3.6GHz	4.8 −5GHz		24.5-27.5GHz	37.5-42		
•		1 1 1 1	3.4–3.7GHz ◀━►			26.5-29.5GHz		1	
			3.6-4.2GHz	4.4-4.9GHz		27.5-29.5GHz			
		1 1 1 1	3.4–3.7GHz			28GHz ◀ - ►	39GF		

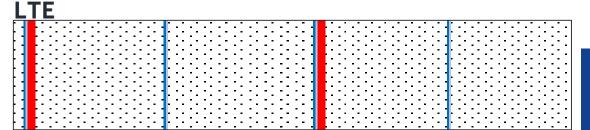
NOKIA

Stand-Alone (SA) and Non-Standalone (NSA) 3GPP background – New Radio (NR) functionality

	((··)) NR (5G)	LTE/eLTE (4G) NR (5G)	(()) (()) (()) (()) (()) (()) (()) (()	
Feature	Standalone (SA)	Non-standalone (NSA)		
Master carrier	NR	LTE and eLTE	NR	
Secondary carrier	-	NR eLTE		
Core choice	5G core (5GC)	4G EPC or 5G core (5GC)	5G core (5GC)	
Operator perspective	Simple, high performance overlay	Leveraging existing 4G deplo	oyments	
Vendor perspective	Independent RAN product	Requires tight interworking with LTE		
End user experiencePeak bitrate set by NRDedicated Low Latency transport		Peak bitrate is sum of LTE and NR Latency impacted if routed via LTE master		

Flexible radio design

"New Radio" (NR) numerology building on LTE


Radio	LTE	New Radio (NR)				
Bands	<4 GHz	< 3GHz	2-6 GHz	> 6 GHz		
Multiple access	CP-OFDM / SC-OFDM	CP-OFDM / CP-OFDM (+ SC-OFDM)				
Duplex	FDD, TDD	FDD TDD				
Sub-carrier (kHz)	15	15, 30, 60	15, 30, 60	60, 120		
Carrier BW (MHz)	1.4 20	5 40	5 100	50 400		
Carrier loading	90%	90 97%	9098%	95%		
Slot per 10ms frame	10	10-20 10-80		80		
Channel codes	Turbo	LDPC (plus Polar for PBCH and PxCCH channels)				

NR radio interface: a more flexible OFDM than LTE

Flexible radio design

Lean carrier also offers base station energy savings

Very limited capability for base station energy savings due to continuous transmission of cell reference signals = Primary synchronization

- = Secondary synchronization
- = Broadcast channel
- = LTE cell reference signals
- Cell specific reference signal transmission 4x every millisecond
- Synchronization every 5 ms
- Broadcast every 10 ms

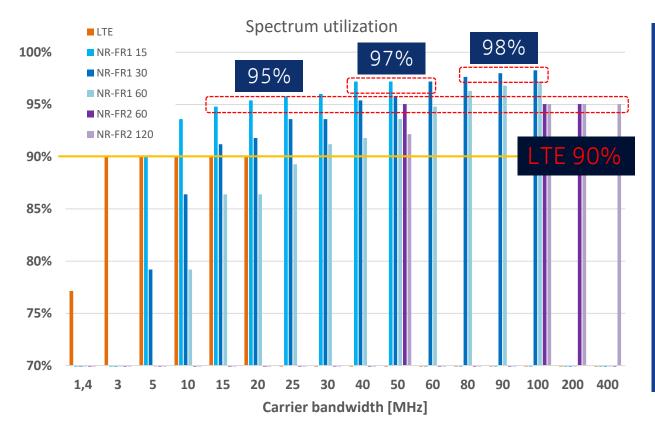
planned

5G enables advanced base station energy savings

10 © 2018 Nokia

5G Enhances Spectral Utilization

Example: loading within 100 MHz spectrum allocation



More efficient than multicarrier LTE

- LTE limited to 100 PRB per 20 MHz carrier (i.e. 90% of carrier bandwidth)
- NR supports wider carriers and larger transmit BW (up to 98% of carrier BW)
- No unnecessary guard bands between narrow carriers

5G Spectrum Utilization up to 98%

5G spectrum utilization is up to 98% of carrier bandwidth 40-100 MHz LTE utilization maximum 90%

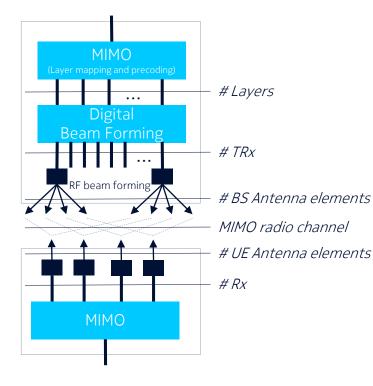
Offers up to **+8%** improvement in max spectrum utilization

3. mMIMO

NOKIA

Scalable Massive MIMO and Beam Forming

Bringing the benefits of large antenna arrays without overburdening devices


Roles

- Coverage, especially with high bands
- Capacity and performance
- Spectrum efficiency, especially in lower bands

[Source: www.emfexplained.info]

Massive MIMO MIMO and beam forming dimensions

MIMO layers

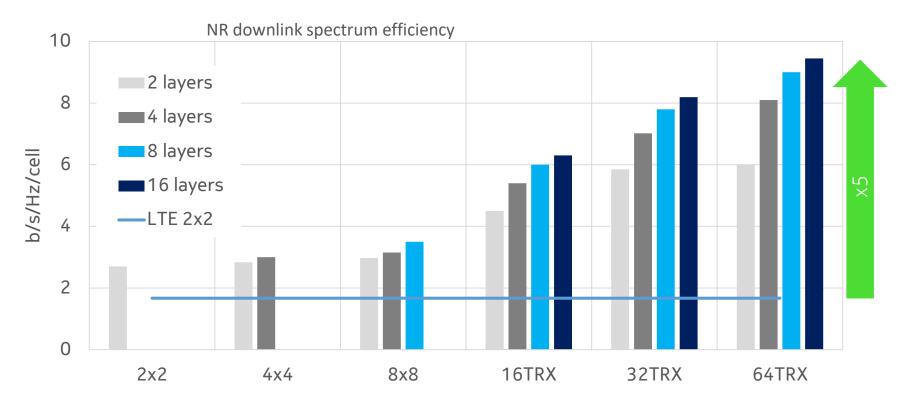
- Sets total number of parallel data paths in sector for SU- and MU-MIMO
- Determines overall sector capacity limits

Transmitter / Receiver (TRx)

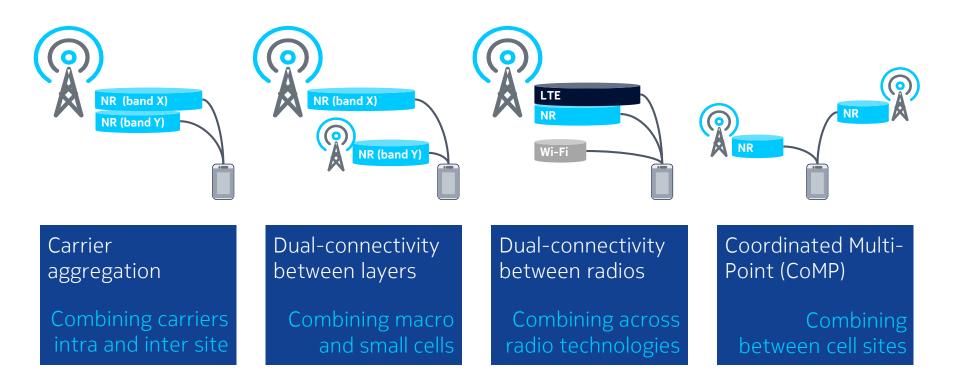
• Sets number of parallel beams during same TTI

Base station Antenna elements (AE)

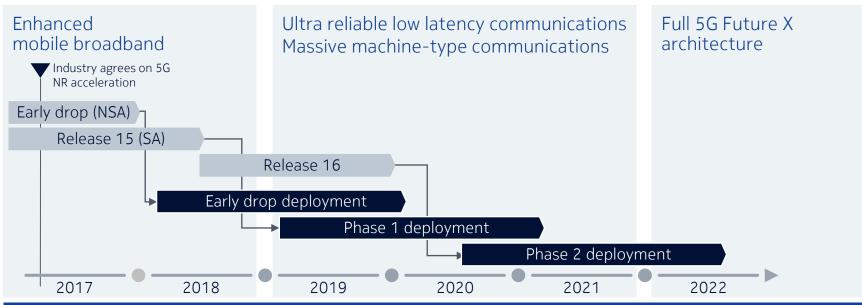
- Structured in rows, columns and polarisation (e.g. 8 columns x 8 rows x 2 xpol= 128 elements)
- With digital BF, sets net beam gain


UE Receivers (Rx)

• Sets maximum number of layers towards a given UE for SU-MIMO. 4 Rx minimum for NR


NOKIA

Massive MIMO Performance estimation



Public

Multi-connectivity and aggregation Re-using LTE techniques to go beyond handover

3GPP standardization timeline Accelerating 5G NR

Release 15

- 5G Non-Standalone (NSA, option 3) and 5G core (5GC) stage 2 completed Dec. 17, with ASN.1 completed March 18 and key corrections agreed in June, Sept and Dec. 18
- 5G Standalone (SA, option 2), eLTE (option 5), 5GC stage 3 completed June 18 with ASN.1 completed Sept. 18, key cor. agreed in Dec. 18
- "Late Drop" for 5GC NSA solutions (options 4&7) and NR-NR dualco now due March 19 with ASN.1 in June 2019
- Release 16 studies completed in 2018, rel. 16 completion due March 2020 with ASN.1 due June 2020

5G equipment examples

Devices

Gateway box

Small cells

Macros

Macros including beamforming

Backhaul

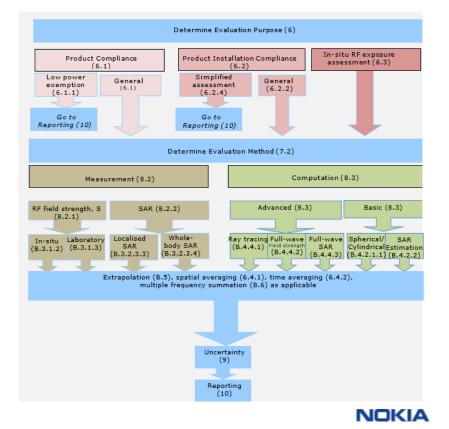
RF-EMF exposure assessment methods

One worldwide applicable international standard – IEC 62232:2017

Frequency range: 110 MHz to 100 GHz Single standard including methods for

- Product compliance
- Product installation compliance
- In-situ RF exposure assessment

Simplified rules


- Low power exclusion for product compliance
- Product installation classes
- In-situ RF exposure

Uncertainty

- Target value (best ind. practice) & maximum value Annex B (normative):
 - All details of evaluation methods (measurements & calculations)

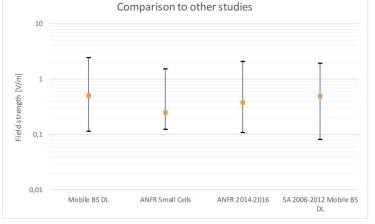
Annex F (informative):

- Technologies
- Introduction of compliance based on actual max power

One practical implementation guide – IEC TR 62669:2019 Uses cases and introduction of compliance based on actual service

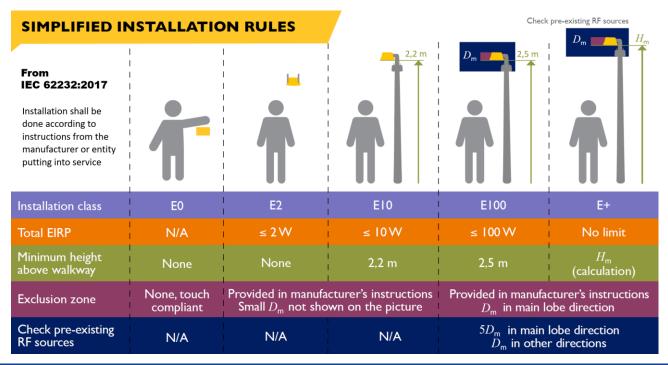
§	Base station type	Evaluation type	Evaluation method
6	Small cell (indoor local area BS)	Product compliance (6.1)	SAR measurements (B.3.2)
7	Small cell (outdoor medium range BS)	Product compliance (6.1)	SAR measurement (B.3.2)
8	Small cell	Product installation compliance (6.2)	Field strength computations (B.4)
9	Small cell	In-situ RF exposure assessment (6.3)	Field strength measurements (B.3.1)
10	Street cell	Product compliance (6.1)	SAR (B.3.2) and field strength (B.3.1) measurements
11	Macro site	In-situ RF exposure assessment (6.3)	Field strength measurements (B.3.1)
12	Macro site (inspection with drone)	In-situ RF exposure assessment (6.3)	Field strength measurements (B.3.1 $5\hat{G}$
13	All types of BS	Compliance using the actual maximum transmitted power or EIRP	Field strength measurements (B.3), computations (B.4) & actual max (B.5)
14	Macro (massive MIMO)	Product compliance (6.1)	Field strength computations (B.4)
15	Macro and small cell (massive MIMO)	Product installation compliance (6.2)	Field strength computations (B.4)
16	Small cell (massive MIMO)	Product installation compliance (6.2) and in-situ RF exposure assessment (6.3)	Field strength measurements (B.3) and computations (B.4)
17	Wireless link using parabolic dish antenna	Product compliance (6.1)	Field strength computations (F.11)

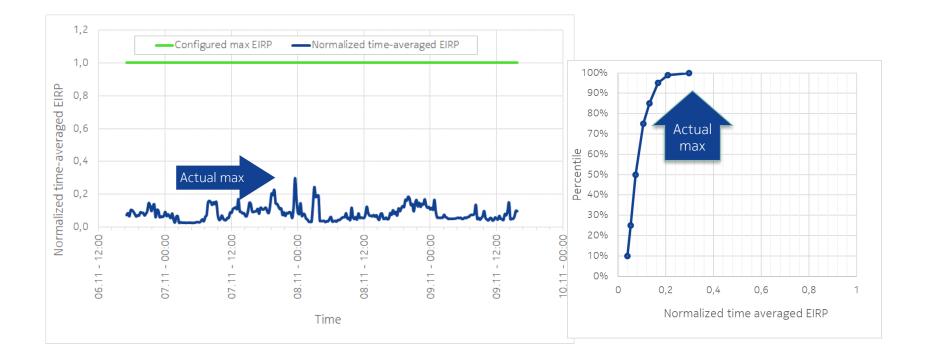
Example: small cells in-situ measurement campaigns (from IEC TR 62669:2019 – Clause 9)


Measurement campaign A

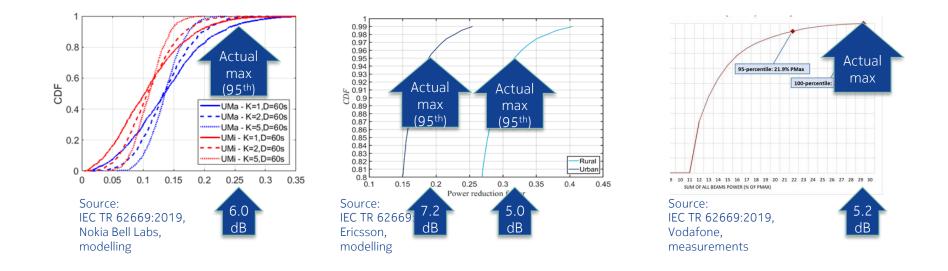
- Measurements according to IEC 62232:2017
 + uplink/downlink statistics
- 9 outdoor sites with medium range small cells in urban furniture

Measurement campaign B


- Measurements according to IEC 62232:2017
- 295 measurement points on 98 sites
- South Africa (80), Amsterdam (16) & Turin (2)
- Indoor (47), Outdoor 2 m to 4 m (30) and Outdoor > 4 m (21)


Example: small cells simplified installation classes (from IEC TR 62669:2019 – Clause 8)

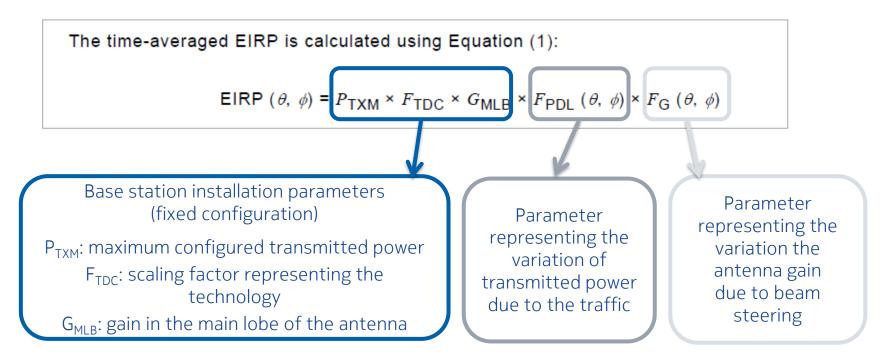
 \rightarrow Confirmed by in-situ measurement campaigns presented in Clause 9



Towards compliance based on actual service Example of time-averaged EIRP of a 4G cell

NOKIA

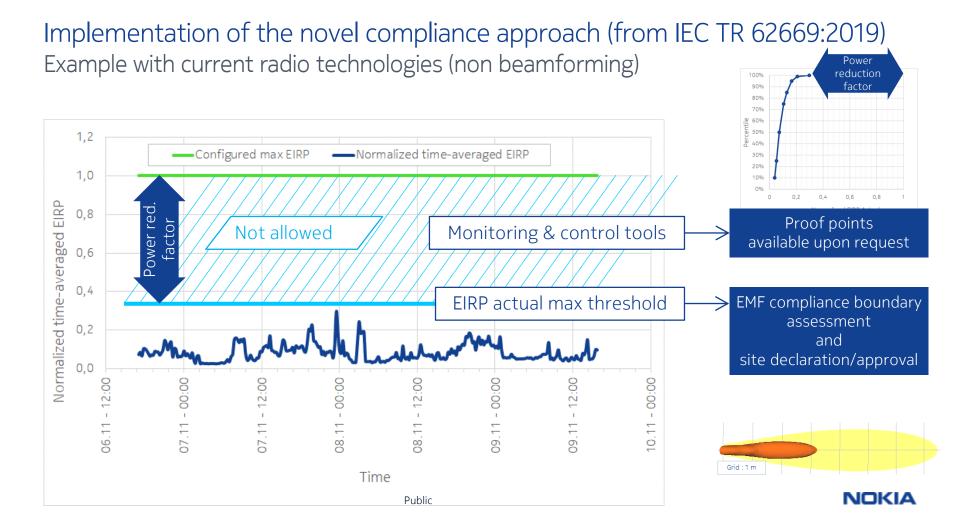
What do we know about new technologies (beamforming) ? Time & space variation of RF transmitted power with 5G massive MIMO

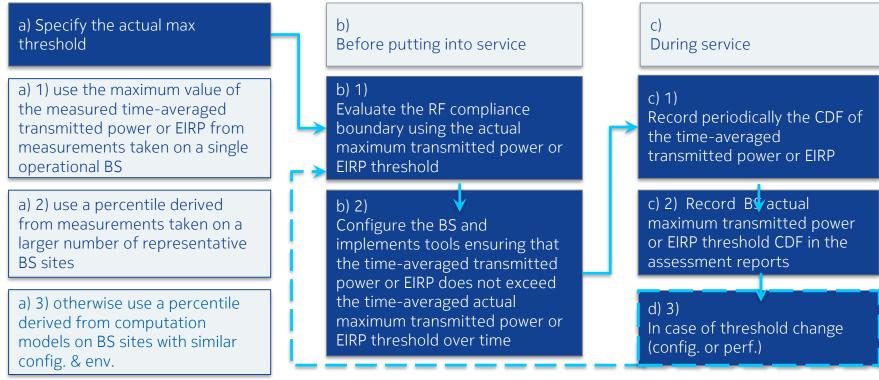


→ The actual transmitted power (time-avg) does not exceed a threshold (= actual maximum threshold)

→ Power reduction factors (actual max threshold/configured max) vary from 5 to 7 dB

Modelling of the novel compliance approach (from IEC TR 62669:2019) EIRP is a key parameter of the base station influencing RF exposure level

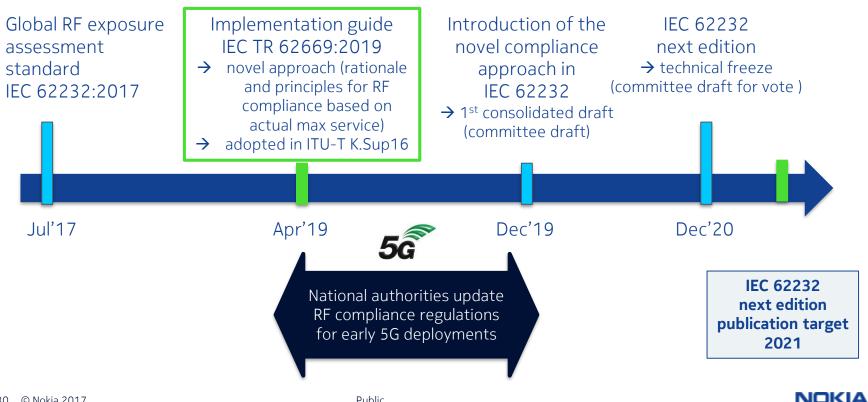



Implementation of the novel compliance approach (from IEC TR 62669:2019) Principles

General principle for RF compliance based on actual max power: [from IEC TR 62669:2019 §13.1.2]

- The real time-averaged transmitted power by BSs during service, called actual transmitted power, is generally below the time-averaged maximum transmitted power.
- Therefore, as a conservative approach, the actual maximum transmitted power can be used to determine the RF compliance boundary provided that the operator is implementing tools ensuring this threshold is not exceeded over time during service.
- These tools can be based on BS counters and features developed by manufacturers to monitor and control the RF transmitted power or EIRP and other relevant characteristics of the BS.
- This applies to all types of BS, whether they are using fixed beams or steerable beams like with mMIMO.

Implementation of the novel compliance approach (from IEC TR 62669:2019) Flow chart applicable to a BS site sector or site sector sub-division



IEC 62232 next edition development with TC106 MT3 Same structure with enhanced content

	Domain	Technical topic	Clauses & sub-clauses
New	Actual max approach	Process	Process in §6.1, 6.2 and 6.3
	Actual max approach	Monitoring & control specification	Methods in new §8.4
	Beamforming (including mMIMO)	Product compliance	6.1
	Actual max & beamforming	In-situ measurements (including extrapolation)	6.3
	Power density assessment	Include power density measurements (63195) & computations (62704-5)	6.1, 8.2 and 8.3
	Frequency range & dish antennas	Extension of higher frequency & inclusion dish antenna formulas	All, 6.1 and Annex B
	Meas. using drones	In-situ meas. process	6.3 and 8.2
Maint	Technology annex	Update (NR) & simplify	Annex F and main body
	Table 2	Update and more didactic	6.2
	Multiple sources	Include missing formulas & align with others (e.g. 62311)	New 8.5 and references in 6.1, 6.2 and 6.3
	Uncertainty	Clarification from remaining NC comts	9 and Annex E
	Consistency with ICNIRP rev	Review & update if/where necessary	5, 8 and Annex B
29 © Nokia 2017		Public	NOKIA

Implementation of the novel compliance approach

From IEC TR 62669:2019 guidelines to the next edition of IEC 62232 standard

Thank you!

NOKIA