

67th Meeting, 23-24 Avril 2014

Maisons-Alfort

Date issued: 14/03/2014

Source: FRANCE

Subject: SE19 WI 34: Proposal to meet the WI34 goals.

Group membership required to read? (Y/N): N

Summary: The WI34 aims at introducing narrow channels into the 6 GHz range. This contribution proposes channel arrangements from the related ECC report and presents the advantages to go for a new recommendation instead of the revision of the ERC/REC14-01and ERC/REC 14-02.

Proposal: SE19 is invited to consider :

- a proposal of narrow channels arrangements in the 6 GHz band,
- the interests to produce a new specific recommendation to present ways of introducing those channels,
- a proposal of new recommendation.

Background:

At its 66th meeting, WGSE has considered the ECC Report related to introduction of narrow channels in frequency band between 3 and 15 GHz (WI28) mature enough to be submitted to public consultation. Furthermore, WGSE agreed on the proposal to create a new work item (WI 34) to reflect the conclusions of this draft report in a new recommendation or revising the relevant recommandations to include narrow channels in the 6 GHz band.

1. INTRODUCTION

At its 66th meeting, WGSE has considered the draft ECC Report assessing the technical feasibility of introducing narrow channel spacing in some existing plans, center gap and/or guard bands of FWS channel arrangement between 3 and 15 GHz (WI28). This was then submitted to public consultation. Furthermore, WGSE agreed on the proposal to create a new work item (WI 34) to reflect the conclusions of this draft report in a new recommendation or providing new versions of the relevant recommendations to include narrow channels in the 6 GHz band.

The subject of the work item has been defined as follows:

"Revision of ERC/REC14-01and ERC/REC 14-02 or produce a new specific recommendation to include narrow channels (2 MHz, 1 MHz, 0,5 MHz, 0,25 MHz, 0.025 MHz) in the L6 (5925-6425 MHz) and U6 (6425 – 7125 MHz) bands in the guard band and center gap."

Hence, SE19 is invited to consider:

- A proposal of narrow channel arrangements into the 6 GHz range,
- The rational of choosing the option of a new specific recommendation introducing those channels,
- A proposal of new recommendation.

2. CHANNEL ARRANGEMENTS

Possible ways to implement narrow channels into the 6 GHz range (lower and upper part of the band) are shown in the annex 1.

The table below presents the number of channel which may be implemented simultaneously, thus providing administrations, relevant flexibility to cope with coordination issues.

Canalisations (MHz)	Lower part of the 6 GHz	Upper part of t	he 6 GHz band
	band	Option 1 : 30 MHz plan	Option 2: 40 MHz plan
3.5	3	/	4
2	5	/	7
1	10	5	14
0.5	21	10	28
0.25	42	20	56
0.025	420	200	560

Table 1: Number of narrow channels which may be simultaneously implemented using the plans of the annex 1

The 2x10.5 MHz arrangement¹ from the plan 1 of the option 1 and 2 proposed in annex 1 overlaps the two 6 GHz plan (5925-6425 MHz and 6425-7125 MHz) which makes impossible to introduce narrow channels in the guard band and duplex gap of the existing 6 GHz channel arrangement by revising the two corresponding recommendations (14-01 and 14-02).

Then, it is more consistent to elaborate a new specific recommendation on narrow channels.

¹ 6169.745-6180.245 MHz and 6424.553-6435.053 MHz

3. PROPOSAL OF NEW RECOMMENDATION

SE19 is invited to consider the draft new recommendation proposed by France presented in the Annex 2.

Annex 1

Option 1: U6 GHz band with 40 MHz channel

Figure 1: Implementation of narrow channels in the upper (40 MHz channels) and lower part of the 6 GHz band

Figure 2: Implementation of narrow channels in the upper (30 MHz channels) and lower part of the 6 GHz band

Annex 2

The French contribution proposes a draft new recommendation which develops channel arrangement into the 6 GHz range.

Draft ECC new Recommendation

Implementation of narrow channels (0.025 to [2/3.5] MHz) in the 6 GHz band

Approved DD Month YYYY (Arial 9pt bold) [last updated: DD Month YYYY) (Arial 9pt) [date of the latest update]]

INTRODUCTION (STYLE: HEADING 1)

[<mark>TBC</mark>]

ECC RECOMMENDATION OF YY(XX) ON IMPLEMENTATION OF NARROW CHANNELS IN THE 6 GHZ BAND (0.025 TO [2/3.5] MHZ)

"The European Conference of Postal and Telecommunications Administrations,

considering

- a) that CEPT/ERC/Recommendation 14-01 E defines channels arrangements for high capacity analogue and digital radio-relay systems operating in the band 5925 MHz 6425 MHz,
- b) that CEPT/ERC/Recommendation 14-02 E defines channels arrangements for high, medium and low capacity digital fixed service systems operating in the band 6425-7125 MHz,
- c) that the whole band from 5925 MHz to 7125 MHz is allocated to the fixed service on a primary basis,
- d) that the ECC report 215 indicates a need for radio links supporting long range and low capacity systems,
- e) that frequency band below 6 GHz are less available for fixed links due to increasing demand for IMT,
- f) there are technical and economic advantages in adopting harmonized channel plans which favors industrial development
- g) that ECC Report 215 assesses the technical feasibility of introducing very narrow channel spacing (25 kHz to 2 MHz) in some existing plans, in guard bands and center gaps of FWS channel arrangement at 6 and 10 GHz,
- h) that ECC Report 215 demonstrates that the 6 GHz band is suitable for introducing narrow channels without causing harmful interferences to other services with appropriate power limitation ensuring compatibility between fixed links and satellite services,

recommends

- 1. that administrations wishing to implement narrow channels in the lower part of the 6 GHz band, should refer to the channel arrangement described in annex 1,
- 2. that administrations wishing to implement narrow channels in the upper part of the 6 GHz band, should refer to the channel arrangement described in annex 2,

Note:

Please check the Office documentation database http://www.ecodocdb.dk for the up to date position on the implementation of this and other ECC Recommendations.

ANNEX 1: IMPLEMENTATION OF NARROW CHANNELS IN THE LOWER PART OF THE 6 GHZ BAND.

A1.1 DERIVATION OF RADIO FREQUENCY CHANNELS

The radio frequency channel arrangement for carrier spacings of 3.5 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.25 MHz and 0.025 MHz shall be derived as follows:

Let

 f_0 be the frequency (MHz) of the center of the band of frequencies occupied, $f_0 = 6302.4$ MHz,

fn be the center frequency (MHz) of one radio-frequency channel in the lower half of the band,

fn' be the center frequency (MHz) of one radio-frequency channel in the upper half of the band,

then the frequencies (MHz) of individual channels are expressed by the following relationships:

a) for systems with a carrier spacing of 3.5 MHz:	
lower half of the band: $fn = f_0 - 134.405 + 3.5 n$	
upper half of the band: $fn' = f_0 + 120.403 + 3.5 n$	where n = 1, 2, 3.
b) for systems with a carrier spacing of 2 MHz:	
lower half of the band: $f_0 = f_0 - 133.155 + 2 n$	
upper half of the band: fn' = f_0 + 121.153 + 2 n	where n = 1, 2, 3, 4, 5.
c) for systems with a carrier spacing of 1 MHz:	
lower half of the band: $fn = f_0 - 132.655 + n$	
upper half of the band: $fn' = f_0 + 121.653 + n$	where n = 1, 29, 10.
d) for systems with a carrier spacing of 0.5 MHz:	
lower half of the band: $fn = f_0 - 132.905 + 0.5 n$	
upper half of the band: $fn' = f_0 + 121.903 + 0.5$ n	where n = 1, 220, 21.
e) for systems with a carrier spacing of 0.25 MHz:	
lower half of the band: $fn = f_0 - 132.78 + 0.25 n$	
upper half of the band: fn' = $f_0 + 122.028 + 0.25$ n	where n = 1, 241, 42.
e) for systems with a carrier spacing of 0.025 MHz:	

lower half of the band: $fn = f_0 - 132.6675 + 0.025 n$ upper half of the band: $fn' = f_0 + 122.1405 + 0.025 n$

where n = 1, 2.....419, 420.

A1.2 CALCULATED PARAMETERS ACCORDING TO RECOMMENDATION ITU-R F.746.

XS (MHz)	n	f ₁ (MHz)	f _n (MHz)	f ₁ ' (MHz)	f _n ' (MHz)	Z1S (MHz)	Z2S (MHz)	YS (MHz)	DS (MHz)
3.5	13	6171.495	6178.495	6426.303	6433.303	3.92	6.697	247.808	254.808
2	15	6171.245	6179.245	6425.553	6433.553	3.67	6.447	246.308	254.308
1	110	6170.745	6179.745	6425.053	6434.053	3.17	5.947	245.308	254.308
0.5	121	6169.995	6179.995	6424.803	6434.803	2.42	5.197	244.808	254.808
0.25	142	6169.87	6180.12	6424.678	6434.928	2.295	5.072	244.558	254.808
0.025	1420	6169.7575	6180.2325	6424.5655	6435.0405	2.1825	4.9595	244.333	254.808

Table 1: Calculated parameters according to ITU-R F.746

Editor's note: Are Z1S and Z2S relevant because we have introduced new "sub band"? Is 5925 MHz or 6167.575 the lower band edge?

XS Separation between centre frequencies of adjacent channels

YS Separation between centre frequencies of the closest go and return channels

Z1S Separation between the lower band edge and the centre frequency of the first channel

- Z2S Separation between centre frequencies of the final channel and the upper band edge
- DS Duplex spacing $(f_n' f_n)$

A1.3 OCCUPIED SPECTRUM

6167.575	MHz			6440 MHz
a) 3.5 Mi	Hz channels			
2.17 MHz	3 x 3.5 MHz	244.308 MHz	3 x 3.5 MHz	4.938 MHz
b) 2 MHz	channels			
2.67 MHz	5x2 MHz	244.308 MHz	5x2 MHz	5.438 MHz
				·
c) 1 MHz	channels			
2.67 MHz	10x1MHz	244.308 MHz	10x1MHz	5.438 MHz
d) 0.5 Mi	Iz channels			
2.17 MHz	21x0.5 MHz	244.308 MHz	21x0.5 MHz	4.938 MHz
e) 0.25 M	1Hz			
2.17 MHz	42x0.25 MHz	244.308 MHz	42x0.25 MHz	4.938 MHz
f) 0.025 I	ИНz			
2.17 MHz	420x0.025 MHz	244.308 MHz	420x0.025 MHz	4.938 MHz
		l		

Figure 1: Illustration of the occupied spectrum

ANNEX 2: IMPLEMENTATION OF NARROW CHANNELS IN THE UPPER PART OF THE 6 GHZ BAND.

A2.1 IMPLEMENTATION OF NARROW CHANNELS - OPTION 1 (40 MHZ CHANNELS)

A2.1.1 Derivation of radio frequency channel

The radio frequency channel arrangement for carrier spacings of 3.5 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.25 MHz and 0.025 MHz shall be derived as follows:

Let

 f_0 be the frequency (MHz) of the center of the band of frequencies occupied, $f_0 = 6.941.25$ MHz,

fn be the center frequency (MHz) of one radio-frequency channel in the lower half of the band,

fn' be the center frequency (MHz) of one radio-frequency channel in the upper half of the band,

then the frequencies (MHz) of individual channels are expressed by the following relationships:

a) for systems with a carrier spacing of 3.5 MHz:	
lower half of the band: $fn = f_0 - 180 + 3.5 n$	
upper half of the band: $fn' = f_0 + 162.5 + 3.5 n$	where n = 1, 2, 3, 4.
b) for systems with a carrier spacing of 2 MHz:	
lower half of the band: $fn = f_0 - 179.25 + 2 n$	
upper half of the band: $fn' = f_0 + 163.25 + 2 n$	where n = 1, 2, 3, 4, 5, 6, 7.
c) for systems with a carrier spacing of 1 MHz:	
lower half of the band: $fn = f_0 - 178.75 + n$	
upper half of the band: $fn' = f_0 + 163.75 + n$	where n = 1, 213, 14.
d) for systems with a carrier spacing of 0.5 MHz:	
lower half of the band: $fn = f_0 - 178.5 + 0.5 n$	
upper half of the band: $fn' = f_0 + 164 + 0.5$ n	where n = 1, 227, 28.
e) for systems with a carrier spacing of 0.25 MHz:	
lower half of the band: $fn = f_0 - 178.375 + 0.25 n$	
upper half of the band: fn' = $f_0 + 164.125 + 0.25$ n	where n = 1, 255, 56.

e) for systems with a carrier spacing of 0.025 MHz:

lower half of the band: $fn = f_0 - 178.2625 + 0.025 n$ upper half of the band: $fn' = f_0 + 164.2375 + 0.025 n$

where n = 1, 2.....559, 560.

A2.1.2 Calculated parameters according to recommendation ITU-R F.746

Table 2: Calculated parameters according to recommendation ITU-R F.746

XS (MHz)	n	f ₁ (MHz)	f _n (MHz)	f ₁ ' (MHz)	f _n ' (MHz)	Z1S (MHz)	Z2S (MHz)	YS (MHz)	DS (MHz)
3.5	14	6764.75	6775.25	7107.25	7117.75	4.75	7.25	332	342.5
2	17	6764	6776	7106.5	7118.5	4	6.5	330.5	342.5
1	114	6763.5	6776.5	7106	7119	3.5	6	329.5	342.5
0.5	128	6763.25	6776.75	7105.75	7119.25	3.25	5.75	329	342.5
0.25	156	6763.125	6776.875	7105.625	7119.375	3.125	5.625	328.75	342.5
0.025	1560	6763.0125	6776.9875	7105.5125	7119.4875	3.0125	5.5125	328.525	342.5

Editor's note: Are Z1S and Z2S relevant because we have introduced new "sub band"? Is 6425 MHz or 6760 the lower band edge?

- XS Separation between centre frequencies of adjacent channels
- YS Separation between centre frequencies of the closest go and return channels
- Z1S Separation between the lower band edge and the centre frequency of the first channel
- Z2S Separation between centre frequencies of the final channel and the upper band edge
- DS Duplex spacing $(f_n^{\prime} f_n)$

A2.1.3 OCCUPIED SPECTRUM

6760 M	Hz			7125
a) 3.5 M	MHz channels			
3 MHz	4x3.5 MHz	328.5MHz	4x3.5 MHz	5.5 MHz
b) 2 Mł	Hz channels			
3 MHz	7x2 MHz	328.5 MHz	7x2 MHz	5.5 MHz
c) 1 M⊦	Hz channels			
3 MHz	14x1 MHz	328.5 MHz	14x1MHz	5.5 MHz
d) 0.5 I	MHz channels			
3 MHz	28x0.5 MHz	328.5 MHz	28x0.5 MHz	5.5 MHz
e) 0.25	MHz			
3 MHz	56x0.25 MHz	328.5 MHz	56x0.25 MHz	5.5 MHz
f) 0.025	5 MHz			
3 MHz	560x0.025 MHz	328.5 MHz	560x0.025 MHz	5.5 MHz

Figure 2: Occupied spectrum

A2.2 IMPLEMENTATION OF NARROW CHANNELS AND 30 MHZ CHANNELS

A2.1.4 Derivation of radio frequency channel

The radio frequency channel arrangement for carrier spacings of 1 MHz, 0.5 MHz, 0.25 MHz and 0.025 MHz shall be derived as follows:

Let

 f_0 be the frequency (MHz) of the center of the band of frequencies occupied, $f_0 = 6\,950$ MHz,fnbe the center frequency (MHz) of one radio-frequency channel in the lower half of the band,fn'be the center frequency (MHz) of one radio-frequency channel in the upper half of the band,then the frequencies (MHz) of individual channels are expressed by the following relationships:

a) for systems with a carrier spacing of 1 MHz:

lower half of the band: $fn = f_0 - 173 + n$	
upper half of the band: $fn' = f_0 + 167 + n$	where n = 1, 2, 3, 4, 5.

b) for systems with a carrier spacing of 0.5 MHz:

lower half of the band: $fn = f_0 - 172.75 + 0.5 n$	
upper half of the band: $fn' = f_0 + 167.25 + 0.5$ n	where n = 1, 29, 10.

c) for systems with a carrier spacing of 0.25 MHz: lower half of the band: fn = $f_0 - 172.625 + 0.25$ n upper half of the band: fn' = $f_0 + 167.375 + 0.25$ n where n = 1, 2.....19, 20.

d) for systems with a carrier spacing of 0.025 MHz:	
lower half of the band: $fn = f_0 - 172.5125 + 0.025 n$	
upper half of the band: $fn' = f_0 + 167.4875 + 0.025$ n	where n = 1, 2199, 200.

XS (MHz)	n	f ₁ (MHz)	f _n (MHz)	f ₁ ' (MHz)	f _n ' (MHz)	Z1S (MHz)	Z2S (MHz)	YS (MHz)	DS (MHz)
1	15	6778	6782	7118	7122	3	3	336	340
0.5	110	6777.75	6782.25	7117.75	7122.25	2.75	2.75	335.5	340
0.25	120	6777.625	6782.375	7117.625	7122.375	2.625	2.625	335.25	340
0.025	1200	6777.5125	6782.4875	7117.5125	7122.4875	2.5125	2.5125	335.025	340

A2.1.5 Calculated parameters according to recommendation ITU-R F.746

Table 3: Calculated parameters according to recommendation ITU-R F.746

Editor's note : Are Z1S and Z2S relevant because we have introduced new "sub band"? Is 6425 MHz or 6760 the lower band edge?

- XS Separation between centre frequencies of adjacent channels
- YS Separation between centre frequencies of the closest go and return channels
- Z1S Separation between the lower band edge and the centre frequency of the first channel
- Z2S Separation between centre frequencies of the final channel and the upper band edge
- DS Duplex spacing $(f_n, -f_n)$

A2.1.6 OCCUPIED SPECTRUM

6775 M	Hz			7125 MHz						
a) 1 Mł	a) 1 MHz channels									
2.5 MHz	5x1 MHz	335 MHz	5x1 MHz	2.5 MHz						
b) 0.5 M	MHz channels									
2.5 MHz	10x0.5 MHz	335 MHz	10x0.5 MHz	2.5 MHz						
c) 0.25	MHz									
2.5 MHz	20x0.25 MHz	335 MHz	20x0.25 MHz	2.5 MHz						
d) 0.02	5 MHz									
2.5 MHz	200x0.025 MHz	335 MHz	200x0.025 MHz	2.5 MHz						

Figure 3: Occupied spectrum

ANNEX 3: OVERVIEW OF THE IMPLEMENTATION OF NARROW CHANNELS IN THE 6 GHZ BAND.

Figure 4: implementation of narrow channels in the lower part of the 6 GHz band and 40 MHz channels in the U6 band

Figure 5: implementation of narrow channels in the lower part of the 6 GHz band and 30 MHz channels in the U6 band

ANNEX 4: LIST OF REFERENCE

- [1] CEPT/ERC/Recommendation 14-01E: radio-frequency channel arrangements for high capacity analogue and digital radio-relay systems operating in the band 5925 MHz 6425 MHz.
- [2] CEPT/REC/Recommendation 14-02E: radio-frequency channel arrangements for high, medium and low capacity digital fixed service systems operating in the band 6425-7125 MHz.

[3] etc.