

TEST REPORT

Rapport d'essai no.: 1-3340/17-14-02-A

N° de prélèvement: COM047170002-01

Laboratoire d'essais

CTC advanced GmbH

Untertuerkheimer Strasse 6-10 66117 Saarbruecken/Germany

Internet: http://www.ctcadvanced.com mail@ctcadvanced.com

Laboratoire d'essais accrédité:

Le laboratoire d'essai (secteur d'essai) est accrédité

suivant DIN EN ISO/IEC 17025 par la

Deutsche Akkreditierungsstelle GmbH (DAkkS)

Numéro d'enregistrement DAkkS: D-PL-12076-01-01

Client

Agence nationale des fréquences

Département Surveillance du marché 4 rue Alphonse Matter 88108 SAINT DIE DES VOSGES Cedex/FRANCE

Spécifications d'essais

EN 50566 Norme produit pour démontrer la conformité des champs radiofréquence produits par les

dispositifs de communication sans fil tenus à la main ou portés près du corps (30 MHz - 6 GHz)

EN 62209-2 Exposition humaine aux champs radio fréquence produits par les dispositifs de communications

sans fils tenus à la main ou portés près du corps. Modèles du corps humain, instrumentation et procédures – Partie 2 : Procédure pour la détermination du débit d'absorption spécifique produit par les dispositifs de communications sans fils utilisés très près du corps humain (plage de

fréquence de 30 MHz à 6 GHz)

EN 62311 Évaluation des équipements électroniques et électriques en relation avec les restrictions

d'exposition humaine aux champs électromagnétiques (0 Hz - 300 GHz)

Voir section 'Documents de référence' de ce rapport pour des spécifications supplémentaires

Equipement sous test (EST)

Nature de l'appareil : Téléphone mobile 4G

Référence: HTC DESIRE 650 (2PYR120)

Numéro de série: HT7231200053 IMEI-No.: 355126080199593

Fréquence(s): Voir section 4.2 "Mode de fonctionnement"

Antenne: Antenne intégrée
Type de batterie: Batterie intégrée
Accessoires: casque d'écoute stéréo

Catégorie d'exposition: Population générale / environnement non contrôlé

Rapport autorisé par:

Essais conduits par:

Alexander Hnatovskiy

Marco Scigliano

l Table des matières

1	Table of	des matières	2
2	Inform	ations générales	3
	2.1 2.2	NotesPlanning des essais	
3	Résum	né des résultats d'essais	4
		of results	
4 4	•	nents de référence	
•	4.1	Limites d'exposition aux champs radioélectriques	
	4.2	Mode de fonctionnement de l'équipement sous test	6
5	Enviro	nnement des essais	6
6	Condit	ions des essais	7
	6.1	Système de mesure	7
	6.1.1	Description du système	7
	6.1.2	Environnement des essais	
	6.1.3	Description de la sonde	
	6.1.4 6.1.5	Description du mannequin	
	6.1.6	Procédure de scan	
	6.1.7	Evaluation du DAS maximal moyenné	
	6.1.8	Traitement et stockages des données	
	6.1.9	Liquides équivalents aux tissus: Propriétés diélectriques	
	6.1.10	Liquides équivalents aux tissus	
	6.1.11	Evaluation de l'incertitude de la mesure pour les essais DAS	
	6.1.12	Evaluation de l'incertitude de la validation du système	
	6.1.13 6.1.14	Validation du système	
7	_	ats des essais	
1			
	7.1 7.2	Description générale des procédures d'essais Vue d'ensemble des résultats	19 19
8	Instrur	nents de mesure utilisés	
9		vations	
_	nexe A:	Vérification du système	
	nexe B:	Résultats des mesures	
	nexe C:	Documentation photographique	_
		Historique du document	
	nexe D:	·	
Anı	nexe E:	Information supplémentaire	

2 Informations générales

2.1 Notes

Les résultats des essais de ce rapport concernent exclusivement les différents essais spécifiés au chapitre 8. CTC advanced GmbH rejette toute responsabilité concernant les conclusions et généralisations obtenues à partir des résultats d'essais et qui seraient appliquées à d'autres spécimens ou exemplaires que le type d'équipement représenté par l'échantillon testé.

Les dispositifs techniques de gestion de la puissance émise, propres au téléphone testé, ont été pris en compte pour effectuer les essais de l'évaluation de conformité aux exigences essentielles.

Le rapport d'essai ne peut être reproduit ou publié que dans son intégralité. L'autorisation écrite préalable de CTC advanced GmbH est en revanche requise pour toute reproduction ou publication se limitant à des extraits de ce rapport.

Ce rapport d'essai est signé électroniquement et valide même sans signature manuscrite. Pour la vérification des signatures électroniques, les clés nécessaires peuvent être obtenues auprès du laboratoire de test. Les essais sont réalisés au CTC advanced GmbH sous les conditions générales de l'entreprise qui sont explicitement cités sous « General Terms and Conditions for CTC advanced ».

Le CTC advanced GmbH n'est en rien responsable d'éventuel résultat non conforme ou non attendu dû à d'éventuel défaut présent sur l'échantillon sous test lors de la réception de celui-ci au sein du laboratoire.

2.2 Planning des essais

Date du début des essais: 11.04.2017 Date de fin des essais: 04.05.2017

3 Résumé des résultats d'essais

DAS _{10g} maximum mesuré dans le corps (W/kg)										
Bande de fréquence:	distance (mm)	mesuré	limite							
GSM 900MHz	5	0,891	2							
DCS 1800MHz	5	0,941	2							
UMTS 900MHz	5	0,794	2							
UMTS 1950MHz	5	1,900	2							
LTE FDD 20 800MHz	5	0,415	2							
LTE FDD 3 1800MHz	5	0,992	2							
LTE FDD 7 2600MHz	5	1,900	2							
Valeur DAS maximum mesurée:	5	1,900	2							

Summary of results

Maximum SAR _{10g} value measured body (W/kg)										
Frequency band	distanc	e (mm)	measured	limit						
GSM 900MHz	5	5	0.891	2						
DCS 1800MHz	Ę	5	0.941	2						
UMTS 900MHz		5	0.794	2						
UMTS 1950MHz		5	1.900	2						
LTE FDD 20 800MHz	Ę	5	0.415	2						
LTE FDD 3 1800MHz	5	5	0.992	2						
LTE FDD 7 2600MHz	5	5	1.900	2						
Maximum SAR value measured:		5	1.900	2						

4 Documents de référence

Normes d'essai	Version	Description de la norme d'essai
EN 50566	2013	Norme produit pour démontrer la conformité des champs radiofréquence produits par les dispositifs de communication sans fil tenus à la main ou portés près du corps (30 MHz - 6 GHz)
EN 62209-2	2010	Exposition humaine aux champs radio fréquence produits par les dispositifs de communications sans fils tenus à la main ou portés près du corps. Modèles du corps humain, instrumentation et procédures – Partie 2: Procédure pour la détermination du débit d'absorption spécifique produit par les dispositifs de communications sans fils utilisés très près du corps humain (plage de fréquence de 30 MHz à 6 GHz)
EN 62311	2008	Évaluation des équipements électroniques et électriques en relation avec les restrictions d'exposition humaine aux champs électromagnétiques (0 Hz – 300 GHz)

4.1 Limites d'exposition aux champs radioélectriques

Selon la recommandation du Conseil Européen 1999/519/EEC (1999-07) du 12 juillet 1999 sur la limitation des expositions de la population générale aux champs électromagnétiques (0 Hz à 300 GHz) (journal officiel L 199 du 30 juillet 1999):

La limite appliquée dans ce rapport est inscrite en caractères gras et correspond au DAS localisé « tronc ».

Exposition humaine	Restriction de base pour les champs électriques, magnétiques et électromagnétiques
DAS volumique crête * (tête et tronc)	2,00 W/kg
DAS volumique moyen ** (corps entier)	0,08 W/kg
DAS volumique crête *** (membres)	4,00 W/kg

Tableau 1: Limites d'exposition aux champs radioélectriques

Notes:

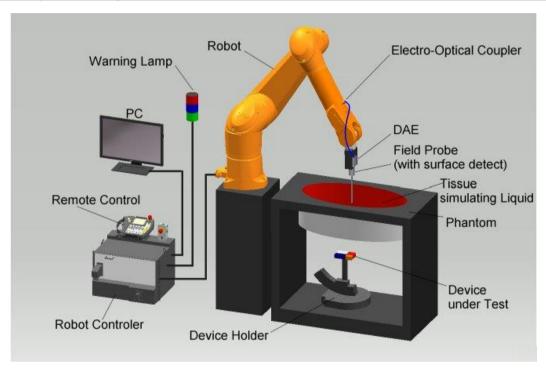
- * La valeur volumique crête du DAS moyennée sur 10 grammes de tissu (défini comme un volume cubique) et sur le temps d'intégration approprié.
- ** La valeur volumique moyenne sur le corps complet.
- *** La valeur volumique crête moyennée sur 10 grammes de tissu (défini comme un volume cubique) et sur le temps d'intégration approprié.

4.2 Mode de fonctionnement de l'équipement sous test

bande testée pour ce rapport	technologie	bande de fréquence	fréquence d'émission la plus basse /MHz	fréquence d'émission la plus haute /MHz	fréquence de transmission la plus basse /MHz	fréquence de transmission la plus haute /MHz	modulation	classe de puissance	niveau de contrôle de puissance testée	GPRS/EGPRS classe de station mobile	GPRS/EGPRS classe multi-créneaux	canal d'essai bas	canal d'essai moyen	canal d'essai haut
\boxtimes	GSM	GSM	880,2	914,8	925,2	959,8	GMSK 8-PSK	4 E2	5	В	12	975	37	124
\boxtimes	GSM	DCS	1710,2	1784,8	1805,2	1879,8	GMSK 8-PSK	1 E2	0	В	12	512	698	885
\boxtimes	UMTS	FDD I	1922,4	1977,6	2112,4	2167,6	QPSK	3	max			9612	9750	9888
\boxtimes	UMTS	FDD VIII	882,4	912,6	927,4	957,6	QPSK	3	max			2712	2788	2863
\boxtimes	LTE	FDD 3	1710	1785	1805	1880	QPSK	3	max			19300	19575	19850
\boxtimes	LTE	FDD 7	2500	2570	2620	2690	QPSK	3	max			20800	21100	21400
\boxtimes	LTE	FDD 20	832	862	791	821	QPSK	3	max			24200	24300	24400

5 Environnement des essais

tissus:


humidité: 40 – 50 % alimentation: 230 V / 50 Hz

6 Conditions des essais

6.1 Système de mesure

6.1.1 Description du système

Le système DASY utilisé pour les essais de conformité comprend les éléments suivants :

- Un robot standard haute précision à 6 axes de la famille RX de Stäubli, avec son contrôleur et logiciel.
- Une extension du bras pour adapter l'électronique d'acquisition des données (DAE).
- Une sonde dosimétrique, comme par exemple une sonde isotrope de champ électrique E, optimisée et étalonnée pour une utilisation dans des liquides équivalents aux tissus. La sonde est équipée d'un détecteur optique de surface.
- Un système d'acquisition électronique des données (<u>Digital Analog Equipment</u>) qui réalise une amplification, un multiplexage et une conversion analogique numérique du signal ainsi qu'une mesure d'offset, une détection mécanique de surface et de collision etc. L'unité est alimentée par batteries. Le signal est transmis de manière optique jusqu'à l'EOC.
- Une unité réalisant la détection de surface optique est connectée à l'EOC.
- Un coupleur électro-optique (EOC) réalisant la conversion du signal optique vers un signal numérique en provenance du DAE. L'EOC est connecté au serveur de mesure DASY.
- Un serveur de mesure du DASY, qui réalise toutes les évaluations des mesures de champ et de détection de surface en temps réel, contrôle également les mouvements du robot ainsi que les arrêts d'urgence.
- Un ordinateur PC sous système d'exploitation Windows 7.
- Le logiciel DASY et le logiciel de traitement des données SEMCAD.
- Une télécommande avec un clavier de programmation, un circuit d'arrêt d'urgence et des signaux d'avertissement lumineux etc.
- Un mannequin générique double permettant la mesure d'une utilisation main gauche et main droite
- Un positionneur pour les téléphones mobiles tenus à la main.
- Du liquide simulant préparé suivant les compositions données.
- Des dipôles de validation du système permettant de caractériser le fonctionnement correct du système.

6.1.2 Environnement des essais

Le banc de mesure DASY est placé au fond d'une pièce aux dimensions suivantes : 5 x 2.5 x 3 m, le mannequin SAM est placé à 75 cm des murs sur le côté et 1.1m du mur du fond.

Le plafond est couvert d'une matrice d'absorbants pyramidaux de 1.5m x 1.5m pour réduire les réflexions. La photo. n°1 de la documentation photographique montre une vue complète de l'environnement d'essai. Le système permet de mesurer des valeurs DAS supérieures à 0.005W/kg.

6.1.3 Description de la sonde

Sonde de chame	os E isotrope ES3DV3 pour les mesures de dosimétrie
Conde de Champ	
Construction	Données techniques d'après les informations du constructeur
Construction	Structure symétrique sur une base triangulaire
	Système de détection de surface à fibres optiques intégrées
	Blindage de protection contre les décharges électrostatiques
-	Coque en PEEK (résistant aux solvants organiques tels que les éthers de glycol)
Etalonnage	Dans l'air de 10MHz à 3GHz
	Dans le liquide équivalent aux tissus (HSL) à
	900MHz (800-1000MHz) (précision ± 9.5%; k=2)
	1.8GHz (1700-1910MHz) (précision ± 9.5%; k=2)
	Etalonnage pour d'autres fréquences à la demande
Fréquence	de 10 MHz à 3 GHz (dosimétrie); Linéarité: ± 0.2 dB (30 MHz to 3 GHz)
Directivité	± 0.2 dB dans le HSL (rotation autour de l'axe de la sonde)
	± 0.3 dB dans le HSL (rotation perpendiculaire à l'axe de la sonde)
Dynamic range	$5 \mu W/g \text{ to} > 100 \text{ mW/g}; \text{ Linéarité: } \pm 0.2 \text{ dB}$
Dimensions	Longueur hors tout: 337 mm
	Longueur de la pointe: 20 mm
	Diamètre du corps: 12 mm
	Diamètre de la pointe: 3.9 mm
	Distance entre la pointe de la sonde et le centre du dipôle: 2.0 mm
Utilisation	Dosimétrie générale jusqu'à 3 GHz
	Essai d'homologation pour les téléphones mobiles
	Scan rapide du mannequin (ES3DV3)
Sonde de champ	os E isotrope EX3DV4 pour les mesures de dosimétrie
	Données techniques d'après les informations du constructeur
Construction	Structure symétrique sur une base triangulaire
	Système de détection de surface à fibres optiques intégrées
	Blindage de protection contre les décharges électrostatiques
	Coque en PEEK (résistant aux solvants organiques tels que les éthers de glycol)
Etalonnage	Dans l'air de 10MHz à 6GHz
3 -	Dans le liquide équivalent aux tissus (HSL) à
	900 MHz (800-1000MHz) (précision ± 9.5%; k=2)
	1.8 GHz (1700-1910MHz) (précision ± 9.5%; k=2)
	2.5 GHz (2350-2700MHz) (précision ± 12.0%; k=2)
	Etalonnage pour d'autres fréquences à la demande
Fréquence	de 10 MHz à 6 GHz (dosimétrie); Linéarité: ± 0.2 dB (30 MHz to 6 GHz)
Directivité	± 0.3 dB dans le HSL (rotation autour de l'axe de la sonde)
504 11.0	± 0.5 dB dans le HSL (rotation perpendiculaire à l'axe de la sonde)
Dynamic range	10 μW/g to > 100 mW/g; Linéarité: \pm 0.2 dB (bruit: typiquement <1 μW/g)
Utilisation	Dosimétrie générale jusqu'à 3 GHz
	Essai d'homologation pour les téléphones mobiles, Scan rapide du mannequin
Application	Dosimétrie de haute précision dans tous scénarios d'exposition (par exemple des
πρηισαιίση	champs de gradient très forts). La seule sonde permettant des mesures de
	l'homologation pour des fréquences jusqu'à 6 GHz avec une précision meilleur que
	30%.
	10070.

6.1.4 Description du mannequin

L'utilisation du mannequin SAM correspond aux exigences spécifiées dans la norme EN 62209-2 dédié aux mesures DAS. Le mannequin est constitué d'une coque en fibre de verre intégrée à une table en bois. Il permet la mesure tête, main droite et gauche, ainsi que la mesure d'un appareil porté au corps. La hauteur maximale du liquide est de 180 mm pour la tête et 220 mm sur la partie plane (mesure au corps). L'épaisseur du mannequin est de 2 mm +/- 0.1 mm.

point de référence de l'oreille droite

point de référence de l'oreille gauche

point de référence de la partie plane

6.1.5 Description du positionneur

Le positionneur a deux échelles pour la rotation de l'appareil (par rapport à l'axe du corps) et l'inclinaison (suivant la ligne de référence passant par le conduit auditif). Le plan entre le conduit auditif et l'extrémité de la bouche a un degré de liberté de 65°. La plaque inférieure contient une paire de trois points de fixation pour le positionneur. Les positions sont ajustées suivant les positions normalisées sur les trois sections. Ce positionneur est utilisé pour les téléphones mobiles et les PDA, si nécessaire l'EST peut être positionné grâce à des blocs de polystyrène.

6.1.6 Procédure de scan

- Le système DASY comprend des fichiers prédéfinis contenant des procédures recommandées pour la mesure et la validation. Toutes les positions d'essai (tête, corps) sont mesurées avec la même configuration, seule la définition de la grille de maillage (grid) peut différer en fonction de la taille de l'EST.
- Les mesures de référence "reference" et de dérive "drift" sont situées en début et fin du processus. Ils mesurent la dérive de l'intensité du champ en un point unique durant toute la procédure. La dérive indiquée est principalement due à la variation de la puissance de sortie de l'EST et ne doit pas varier de plus de +/- 5 %.
- La mesure de contrôle de surface "surface check" permet de tester la détection optique de la surface du mannequin, cette dernière est détectée optiquement et mécaniquement à plusieurs reprises et les résultats sont comparés. Les résultats donnent la hauteur détectée par les deux systèmes et l'écart type de la répétitivité de la détection. Des bulles d'air ou la réfraction dans le liquide due à la séparation des éléments du mélange donne une mauvaise répétitivité (au-dessus de ± 0.1 mm). Pour prévenir les mauvais résultats, la mesure doit être exécutée dans un liquide exempt de bulle d'air. La différence entre la détection optique de la surface et sa position réelle dépend de la sonde et est spécifiée pour cette dernière. (cela ne dépend ni de la réflectivité de la surface ni de l'angle que fait la sonde avec la surface ± 30°).
- Le scan de surface "area scan" mesure le DAS au-dessus de l'EST ou du dipôle de validation sur une surface parallèle au mannequin. Il est utilisé pour localiser approximativement la valeur du DAS crête grâce à une interpolation de Spine. Le robot effectue des incréments le long des axes du maillage pendant que la sonde mesure l'intensité du champ électrique. La sonde touche la surface du mannequin SAM juste avant l'acquisition des valeurs de mesure. Le scan standard utilise un maillage large pour une mesure plus rapide. La taille de la maille pour les mesures dans la tête est de 15 mm de côté. En cas de besoin d'une définition plus fine, la taille de la maille peut être réduite. L'espacement et l'orientation des mailles n'ont pas d'influence sur le résultat du DAS. Pour des applications particulières, si la méthode de scan standard ne permet pas de trouver le DAS maximum à l'intérieur du maillage, comme par exemple pour les téléphones mobiles à clapet, alors le maillage peut être adapté en orientation. Les résultats du scan de surface sont documentés en annexe B.
- Un scan en volume "7x7x7 zoom scan" mesure le champ dans un volume autour de la valeur DAS maximum 2D obtenue lors du scan de surface précédent. C'est un maillage de 7x7 où le robot effectue 7 pas de mesure supplémentaires sur l'axe des Z. La taille de la maille pour une mesure dans le cube est de 5 mm dans les directions X, Y et Z. DASY est aussi capable de répéter le scan en volume si plus d'une valeur maximale a été décelée lors du scan de surface. Les résultats des essais suivant les normes spécifiées (voir chapitre 4) sont indiqués sous la forme d'un tableau au chapitre 7.2.

6.1.7 Evaluation du DAS maximal moyenné

La valeur maximale moyennée de DAS pour 1 ou 10 g est évaluée d'après la mesure précédente dans le cube. L'évaluation se base sur la valeur DAS mesurée en chaque point du maillage fin de la taille suivante 7x7x7 points. L'algorithme qui permet de trouver le volume d'intégration maximum est séparé en trois différentes étapes.

Les valeurs entre le centre du dipôle de la sonde et la surface du mannequin sont obtenues par extrapolation. Ces valeurs ne peuvent pas être mesurées puisque le centre du dipôle est à 2,7mm de la pointe de la sonde et la distance entre la surface et le point le plus bas est d'environ 1mm.

La valeur maximale interpolée est recherchée avec l'algorithme « straight-forward ». Autour de ce maximum les valeurs DAS intégrées sur des volumes de 1g ou 10g sont calculées par l'algorithme d'interpolation 3D de Spline.

Le volume cubique d'intégration doit être déplacé à travers le volume interpolé et extrapolé de la zone du zoom scan proche de la surface interne du fantôme à proximité du DAS local maximal. Le cube ayant le DAS maximal moyenné le plus élevé ne doit pas être au bord/à la périphérie du volume de zoom-scan. Si c'est le cas, le volume du zoom-scan doit être déplacé et les mesurages effectués à nouveau

Extrapolation

L'extrapolation est basée sur la méthode des moindres carrés. Pour les points sur les trois premiers centimètres sur l'axe des z, on utilise un polynôme du quatrième ordre. Ce polynôme est alors utilisé pour évaluer les points entre la surface et la pointe de la sonde. Les points calculés depuis la surface sont séparés chacun de 1 mm.

Interpolation

L'interpolation des points est effectuée par la méthode 3D de Spline. L'interpolation 3D de Spline est composée de trois interpolations à une dimension avec la condition « not a knot » (axes x, y et z)

Intégration volumique

La taille du cube est d'abord calculée, ensuite le volume est intégré par l'algorithme des trapèzes. 8000 points (20x20x20) sont interpolés pour calculer la moyenne.

Extrapolation avancée

DASY utilise une option d'extrapolation avancée qui est capable de compenser les effets de bord de la sonde de champ E.

6.1.8 Traitement et stockages des données

Stockage des données

Paramètres du liquide:

Le logiciel de DASY stocke les données acquises par les instruments sous forme de données brutes (en millivolts lus en sortie de la sonde) accompagnées par tous les paramètres nécessaires pour le traitement (facteur de conversion de la sonde, paramètres diélectriques du liquide, fréquence et modulation de l'EST).

Les données de mesure peuvent être visualisées ou exportées sous différentes unités ou formats suivant le type de sonde sélectionnée ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Les données brutes peuvent être exportées pour réaliser des traitements avec d'autres logiciels.

Traitement des données par SEMCAD

Le logiciel SEMCAD réalise automatiquement les procédures suivantes pour calculer les unités de champ à partir des grandeurs en microvolts provenant du connecteur de la sonde. Les paramètres utilisés pour le traitement sont conservés dans le module de configuration du logiciel :

Paramètres de la sonde: - Sensibilité Normi, aio, ai1, ai2

Facteur de conversion ConvF_i
 Point de compression de la diode Dcpi

Paramètres de l'EST: - Fréquence f

- Densité

- Facteur de crête (Crest factor) cf - Conductivité σ

Ces paramètres doivent être correctement ajustés. Ils sont spécifiés dans la documentation du composant, ou

ρ

DASY.

Le premier pas du traitement est la linéarisation du signal d'entrée filtré en tenant compte des caractéristiques

sont directement importés par le biais des fichiers de configuration établis pour chaque composant du système

Le premier pas du traitement est la linéarisation du signal d'entrée filtré en tenant compte des caractéristiques de compression de la diode de détection. La compensation dépend du signal d'entrée, du type de diode et du facteur de transmission DC de la diode vers le système de traitement électronique.

Si le champ d'excitation est pulsé, le facteur de crête doit être connu correctement pour compenser la puissance crête. La formule pour chaque canal est la suivante:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

avec V_i = signal compensé pour le canal i (i = x, y, z) U_i = signal d'entré du canal i (i = x, y, z)cf = facteur de crête du champ d'excitation (paramètre DASY)dcp_i = point de compression de la diode (paramètre DASY)

A partir des signaux d'entrée compensés, le champ primaire pour chaque canal peut être déterminé:

Sonde de champs E: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

Sonde de champs H: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

avec V_i = signal compensé du canal i (i = x, y, z)Norm_i = sensibilité du capteur du canal i (i = x, y, z)

[mV/(V/m)²] pour la sonde de champ E = gain de sensibilité dans la solution

a_{ii} = facteurs de sensibilité pour la sonde de champ H

f = fréquence de la porteuse [GHz]

ConvF

E_i = intensité du champ électrique du canal i en V/m H_i = intensité du champ magnétique du canal i en A/m

La valeur quadratique des composants du champ donne la valeur totale de l'intensité du champ:

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

Les valeurs de champ découlent de la valeur de champ primaire:

$$DAS = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

avec DAS = débit d'absorption spécifique local en mW/g E_{tot} = intensité totale du champ en V/m

 σ = conductivité en [mho/m] ou [Siemens/m] ρ = densité des équivalents aux tissus en g/cm³

On peut remarquer que la densité est ajustée normalement à 1 (ou 1.06) pour privilégier la densité du cerveau à celle du liquide équivalent. La densité de flux de puissance est calculée en supposant que le champ d'excitation est en champ libre.

$$P_{pwe} = E_{tot}^2 / 3770$$
 ou $P_{pwe} = H_{tot}^2 \cdot 37.7$

avec P_{pwe} = densité de puissance équivalente pour une onde plane en mW/cm²

 E_{tot} = intensité totale du champ électrique en V/m H_{tot} = intensité totale du champ magnétique en A/m

6.1.9 Liquides équivalents aux tissus: Propriétés diélectriques

Les ingrédients suivants sont utilisés pour produire le liquide équivalent aux tissus (Les liquides utilisés pour les essais décrits au chapitre 7.2 sont marqués d'un⊠)

Ingrédients (% du poids)		Fréquence (MHz)												
bande de fréquence	□ 450	□ 835	⊠ 900	⊠ 1750	⊠ 1900	⊠ 2450								
Type de tissu	Tête	Tête	Tête	Tête	Tête	Tête								
Eau	38,56	41,45	40,92	55,35	55,19	54,7								
Sel (Na Cl)	3,95	1,45	1,48	0,38	0,19	0,0								
Sucre	56,32	56,0	56,5	0,0	0,0	0,0								
HEC	0,98	1,0	1,0	0,0	0,0	0,0								
Bactéricide	0,19	0,1	0,1	0,1	0,1	0,1								
Tween 20	0,0	0,0	0,0	44,17	44,52	45,2								

Tableau 1: Propriétés diélectriques des tissus de la tête

Sel: 99+% Pur Chlorure de Sodium Sucre: 98+% Pur Saccharose Eau: De ionisée, résistivité $16M\Omega$ + HEC: Hydroxyéthyl Cellulose

Tween 20: Polyoxyethylene (20) sorbitan monolaurate

6.1.10 Liquides équivalents aux tissus

Liquide	Fréquences	Tissu de	la tête cible		Tissu de la tête mesuré								
	utilisés	Permittivité	Conductivité	Permittivité	ooort.	Conducti	vité	coort	Date de la				
	cibles (MHz)	remillivite	[S/m]	remillivite	ecart	ε''	[S/m]	ecart	mesure				
900	842	41.50	0.91	41.0	-1.2%	19.53	0.91	0.8%	03.05.2017				
	847	41.50	0.91	40.9	-1.4%	19.52	0.92	0.7%					
	852	41.50	0.92	40.9	-1.5%	19.51	0.92	0.7%					
	880	41.50	0.95	40.5	-2.4%	19.44	0.95	0.3%					
	882	41.50	0.95	40.5	-2.4%	19.43	0.95	0.3%					
	897	41.50	0.97	40.4	-2.6%	19.43	0.97	0.3%					
	900	41.50	0.97	40.3	-2.9%	19.40	0.97	0.1%					
	912	41.50	0.98	40.2	-3.3%	19.37	0.98	0.8%					
	915	41.50	0.98	40.1	-3.3%	19.36	0.99	0.9%					
1750/	1710	40.13	1.35	39.4	-1.8%	13.71	1.30	-3.3%	15.04.2017				
1800	1747	40.08	1.37	39.3	-2.0%	13.82	1.34	-2.0%					
	1750	40.07	1.37	39.2	-2.1%	13.83	1.35	-1.8%					
	1785	40.02	1.39	39.1	-2.2%	13.84	1.37	-1.2%					
1900	1900	40.00	1.40	39.5	-1.3%	13.25	1.40	0.0%	11.04.2017				
	1922	40.00	1.40	39.7	-0.7%	13.20	1.41	0.8%					
	1950	40.00	1.40	39.6	-1.1%	13.24	1.44	2.6%					
	1978	40.00	1.40	39.5	-1.4%	13.30	1.46	4.5%					
2450/	2510	39.12	1.87	38.0	-2.9%	13.01	1.82	-2.6%	25.04.2017				
2600	2535	39.09	1.89	37.9	-3.2%	13.07	1.84	-2.6%					
	2560	39.06	1.92	37.8	-3.3%	13.07	1.86	-3.1%					
	2600	39.01	1.96	37.6	-3.7%	13.29	1.92	-2.1%					

Tableau 2: Paramètres des liquides équivalents aux tissus de la tête

Note: Les propriétés diélectriques ont été mesurées par la méthode de la sonde de contact à 22°C.

6.1.11 Evaluation de l'incertitude de la mesure pour les essais DAS

L'incertitude pour DASY5 selon IEC 62209-2 / 2010 (0.3 – 6GHz)

L'incertitude composée totale de la mesure du système est de ± 12,7% (K=1).

L'incertitude élargie (k=2) est évaluée à ± 25,4%.

L'incertitude de mesure a été évaluée selon la norme IEC 62209-2/2010 et a été déterminée par Schmid & Partner Engineering AG. Le détail des incertitudes individuelles suit le tableau suivant:

		IEC	622	09-2/2010 (0.3	- 6 G	Hz)									
	lárar		Distribution de		-	Ci	Ci	Standar			d Ind	ertitu	ıde	v _i ² ou	
Sources d'erreur		Tolérance Incertitude		probabilité	Diviseur		(1g)	(10g)	± %, (1g)		g)	± %, (10g)			v _i ou V _{eff}
Système de mesure															
Etalonnage de la sonde	±	6.6	%	Normale		1	1	1	±	6.6	%	±	6.6	%	8
Isotropie axiale	±	4.7	%	Rectangulaire		3	0.7	0.7	±	1.9	%	±	1.9	%	8
Isotropie hémisphérique	±	9.6	%	Rectangulaire	√	3	0.7	0.7	±	3.9	%	±	3.9	%	8
Effets de bord	±	2.0	%	Rectangulaire		3	1	1	±	1.2	%	±	1.2	%	8
Linéarité de la sonde	H	4.7	%	Rectangulaire		3	1	1	±	2.7	%	+1	2.7	%	8
Limite de détection du	±	1.0	%	Rectangulaire	1	3	1	1	±	0.6	%	±	0.6	%	8
système															
Réponse en modulation	±	2.4	%	Rectangulaire	1	3	1	1	±	1.4	%	±	1.4	%	8
Lectures électroniques	±	0.3	%	Normale		1	1	1	±	0.3	%	±	0.3		8
Temps de réponse	±	8.0	%	Rectangulaire		3	1	1	±	0.5	%	±	0.5	%	8
Temps d'intégration	Ħ	2.6	%	Rectangulaire		3	1	1	±	1.5	%	±	1.5	%	8
Conditions RF ambiantes	±	3.0	%	Rectangulaire		3	1	1	±	1.7	%	±	1.7	_	8
Réflexions RF ambiantes	±	3.0	%	Rectangulaire		3	1	1	±	1.7	%	±	1.7	%	8
Positionneur de la sonde	±	0.8	%	Rectangulaire		3	1	1	±	0.5	%	±	0.5	%	8
Positionnement de la	±	6.7	%	Rectangulaire		3	1	1	±	3.9	%	±	3.9	%	8
sonde															
Post-traitement	±	4.0	%	Rectangulaire		3	1	1	±	2.3	%	±	2.3	%	8
Échantillon en essai															
Position de l'échantillon	±	2.9	%	Normale		1	1	1	±	2.9	%	±	2.9	%	145
Incertitude du support de l'appareil	±	3.6	%	Normale		1	1	1	±	3.6	%	±	3.6	%	5
Dérive de l'alimentation	±	5.0	%	Rectangulaire	1	3	1	1	±	2.9	%	±	2.9	%	8
Mannequin et montage				Ü											
Incertitude sur la forme du mannequin	±	7.9	%	Rectangulaire	1	3	1	1	±	4.6	%	±	4.6	%	8
Correction DAS	±	1.9	%	Rectangulaire	1	3	1	0.84	±	1.1	%	±	0.9	%	8
Conductivité du liquide (cible)	±	5.0	%	Rectangulaire	√	3	0.78	0.71	±	2.3	%	±	2.0	%	8
Conductivité du liquide (mesurée)	±	5.0	%	Rectangulaire	√	3	0.26	0.26	±	0.8	%	±	0.8	%	8
Permittivité du liquide (cible)	±	3.4	%	Rectangulaire	1	3	0.78	0.71	±	1.5	%	±	1.4	%	8
Permittivité du liquide (meas.)	±	0.4	%	Rectangulaire	√	3	0.23	0.26	±	0.1	%	±	0.1	%	8
Incertitude composée									±	12.7	%	±	12.6	%	330
Incertitude élargie normalisée				on IEC 62209-3						25.4	%	±	25.3	%	

Tableau 3: Incertitude de la mesure selon IEC 62209-2/2010 (300 MHz – 6GHz)

6.1.12 Evaluation de l'incertitude de la validation du système

L'incertitude composée totale de la mesure du système est de ± 9,1% (K=1).

L'incertitude élargie (k=2) est évaluée à ± 18,2%

L'incertitude de mesure a été déterminée par Schmid & Partner Engineering AG. Le détail des incertitudes individuelles suit le tableau suivant:

L'incer	titu	de d	de I	a validation	du s	sys	stème	e (0.3	- (3 GH	lz)				
	Tolérance			Distribution			Ci	Ci	,	Stand	arc	Ind	certitu	ude	v _i ² ou
Sources d'erreur		ertitu		de probabilité	Diviseur		(1g)	(10g)	±'	%, (1	g)	± %	6, (10)g)	V _{eff}
Système de mesure															
Etalonnage de la sonde	±	6.0	%	Normale		1	1	1	±	6.0	%	±	6.0	%	8
Isotropie axiale	±	4.7	%	Rectangulaire		3	0.7	0.7	±	1.9	%	±	1.9	%	8
Isotropie hémisphérique	±	0.0	%	Rectangulaire		3	0.7	0.7	±	0.0	%	±	0.0	%	8
Effets de bord	±	1.0	%	Rectangulaire		3	1	1	±	0.6	%	±	0.6	%	8
Linéarité de la sonde	±	4.7	%	Rectangulaire		3	1	1	±	2.7	%	±	2.7	%	8
Limite de détection du	±	1.0	%	Rectangulaire	1	3	1	1	±	0.6	%	±	0.6	%	8
système				J											
Lectures électroniques	±	0.3	%	Normale		1	1	1	±	0.3	%	±	0.3		∞
Temps de réponse	±	0.0	%	Rectangulaire		3	1	1	±	0.0	%	±	0.0	%	8
Temps d'intégration	±	0.0	%	Rectangulaire		3	1	1	±	0.0	%	±	0.0	%	∞
Conditions RF ambiantes	±	3.0	%	Rectangulaire		3	1	1	±	1.7	%	±	1.7	%	∞
Positionneur de la sonde	±	0.4	%	Rectangulaire		3	1	1	±	0.2	%	±	0.2	%	8
Positionnement de la	±	2.9	%	Rectangulaire		3	1	1	±	1.7	%	±	1.7	%	8
Evaluation DAS max.	±	1.0	%	Rectangulaire		3	1	1	±	0.6	%	±	0.6	%	8
Échantillon en essai															
Position de l'échantillon	±	0.0	%	Rectangulaire		3	1	1	±	0.0	%	±	0.0	%	8
Incertitude du support de	±	2.0	%	Rectangulaire	V	3	1	1	±	1.2	%	±	1.2	%	8
l'appareil															
Dérive de l'alimentation	±	3.4	%	Rectangulaire		3	1	1	±	2.0	%	±	2.0	%	8
Mannequin et montage															
Incertitude sur la forme du	±	4.0	%	Rectangulaire		3	1	1	±	2.3	%	±	2.3	%	∞
mannequin															
Correction DAS	±	1.9	%	Rectangulaire	1	3	1	0.84	±	1.1	%	±	0.9	%	∞
Conductivité du liquide	±	5.0	%	Normale		1	0.78	0.71	±	3.9	%	±	3.6	%	∞
(cible)															
Conductivité du liquide	±	5.0	%	Normale		1	0.26	0.26	±	1.3	%	±	1.3	%	∞
(mesurée)		0.0	,,			•	0.20	0.20			, 0			, •	
Permittivité du liquide	±	1.7	%	Rectangulaire	V	3	0.78	0.71	±	0.8	%	±	0.7	%	∞
(cible)			, ,	3							, -			, •	
Permittivité du liquide	±	0.3	%	Rectangulaire	V	3	0.23	0.26	±	0.0	%	±	0.0	%	∞
(meas.)															
Incertitude composée									±	9.1	%	±	8.9	%	330
Incertitude élargie															
normalisée									±	18.2	%	±	17.9	%	
T 1 1 4 1 4 1 1 1 1															

Tableau 4: Incertitude de la mesure (300MHz - 3GHz).

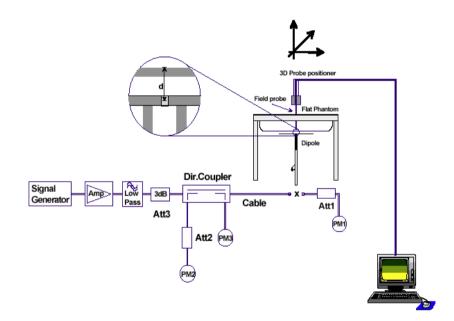
6.1.13 Validation du système

La validation du système est conduite pour vérifier la précision du système de mesure complet et la performance du logiciel. Elle est conduite avec du matériel équivalant aux tissus en accord avec les normes spécifiées en section 4. Le tableau suivant montre les résultats de validation pour toutes les bandes de fréquences et liquides de tissus utilisés pendant les mesures (représentation graphique voir annexe A).

Equipement de validation	fréquence	Objectif DAS _{10g} (1000mW) (+/- 10%)	DAS _{10g} de validation mW/g	SAR _{10g} ecart	date de mesure
D900V2 S/N: 102	900 MHz tête	6.98	6.84	-2.0	03.05.2017
D900V2 S/N: 102	900 MHz tête	6.98	6.79	-2.7	04.05.2017
D1750V2 S/N: 1093	1750 MHz tête	19.90	18.60	-6.5	15.04.2017
D1750V2 S/N: 1093	1750 MHz tête	19.90	19.60	-1.5	21.04.2017
D1900V2 S/N: 5d009	1900 MHz tête	21.00	19.90	-5.2	11.04.2017
D2600V2 S/N: 1040	2600 MHz tête	25.90	25.90	0.0	25.04.2017

Table 5: Résultats de la validation du système

6.1.14 Procédure de validation


La validation du système est réalisée par l'utilisation d'un dipôle de validation qui est positionné parallèlement à la partie plane du mannequin SAM au niveau du point de référence.

La distance du dipôle au mannequin SAM est déterminée par une cale en plexiglas. Le dipôle est connecté à une source qui consiste en un générateur de signaux et un amplificateur qui transmettent un signal au travers d'un coupleur directionnel, d'un câble et d'un adaptateur N vers SMA. Le dipôle est alimenté par une onde d'une puissance 1000 mW. Pour ajuster la puissance on utilise un wattmètre. La sonde de puissance est connectée à la terminaison du câble avant la validation pour obtenir la puissance en ce point et ajuster le générateur de signal. Les puissances transmise et réfléchie sont contrôlées à la sortie du coupleur directionnel pendant la validation pour s'assurer que la puissance émise vers le dipôle est constante. Ceci peut être également contrôlé par la dérive en puissance après l'essai.

Les résultats de la validation doivent être proche de la valeur déterminée lors de l'étalonnage du dipôle avec les liquides et les systèmes d'essai appropriés (+/-10%)

La validation du système est réalisée régulièrement sur toutes les bandes de fréquences où les essais sont effectués. Les résultats sont stockés afin d'avoir un suivie des performances du système sur le long terme et peuvent être documentés à la demande dans le rapport de norme européenne.

7 Résultats des essais

7.1 Description générale des procédures d'essais

GSM / UMTS:

L'EST est mesuré en utilisant un testeur de radiocommunication CMU 200 afin de commander les canaux d'essai et la puissance d'émission de l'EST à son maximum.

En mode UMTS, les tests sont effectués avec un canal référence de mesure (RMC), aussi les bits du contrôle de puissance sont configurés sur 'All 1' pour atteindre la puissance d'émission maximale de l'EST.

Les positions d'essai décrites dans le tableau ci-dessous sont en accord avec la norme spécifiée.

LTE:

L'EST est mesuré en utilisant un testeur de radiocommunication CMW 500 afin de commander les canaux d'essai et la puissance d'émission de l'EST à son maximum.

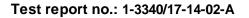
Les positions d'essai décrites dans le tableau ci-dessous sont en accord avec la norme spécifiée.

De manière à déterminer le setup 4G le plus défavorable en termes de puissance, une recherche est effectuée au préalable aboutissant aux résultats mentionnés dans les tableaux 6 et 7.

Dans un premier temps, nous procédons par l'intermédiaire du banc SAR à un rapide area scan permettant de déterminer la position dans le mannequin pour laquelle la valeur du champ électrique mesurée à la sonde en V/m est la plus élevée.

Une fois cette position trouvée, nous faisons évoluer les paramètres des Ressources Block (RB) sur notre simulateur CMW tout en mesurant à la sonde la valeur du champ électrique dégagé par l'EST.

Ainsi nous pouvons déterminer quels RB offset et Size doivent être paramétrés sur le CMW 500 de manière à déterminer la valeur SAR la plus élevée.


7.2 Vue d'ensemble des résultats

	DAS _{10g} dans le corps GSM 900 MHz (moyennés sur une masse de 10g)										
canal	fréquence	condition de test	de test Face DAS _{10g}		//kg)	température de	distance				
oanai	(MHz)	oorianion de test	1 400	mesuré	limite	liquide (°C)	(mm)				
975	880,2	4 créneaux temps	Avant	0,795	2,0	22,4	5				
37	897,4	4 créneaux temps	Avant	0,891	2,0	22,4	5				
124	914,8	4 créneaux temps	Avant	0,829	2,0	22,4	5				
37	897,4	4 créneaux temps	Arrière	0,819	2,0	22,4	5				
37	897,4	4 créneaux temps	Gauche	0,510	2,0	22,4	5				
37	897,4	4 créneaux temps	Droit	0,483	2,0	22,4	5				
37	897,4	4 créneaux temps	Dessus	0,037	2,0	22,4	5				
37	897,4	4 créneaux temps	Dessous	0,633	2,0	22,4	5				

Tableau 6: Résultats des essais GSM 900 (DAS dans le corps)

	DAS _{10g} dans le corps GSM 1800 MHz (moyennés sur une masse de 10g)											
canal	fréquence	condition de test	n de test Face DAS _{10g} (W/kg) température de		distance							
Cariai	(MHz)		1 400	mesuré	limite	liquide (°C)	(mm)					
698	1747,4	4 créneaux temps	Avant	0,794	2,0	22,4	5					
512	1710,2	4 créneaux temps	Arrière	0,893	2,0	22,4	5					
698	1747,4	4 créneaux temps	Arrière	0,831	2,0	22,4	5					
885	1784,8	4 créneaux temps	Arrière	0,941	2,0	22,4	5					
698	1747,4	4 créneaux temps	Gauche	0,377	2,0	22,4	5					
698	1747,4	4 créneaux temps	Droit	0,109	2,0	22,4	5					
698	1747,4	4 créneaux temps	Dessus	0,053	2,0	22,4	5					
698	1747,4	4 créneaux temps	Dessous	0,353	2,0	22,4	5					

Tableau 7: Résultats des essais GSM 1800 (DAS dans le corps)

	DAS _{10g} dans le corps UMTS FDD VIII 900 MHz (moyennés sur une masse de 10g)											
canal	fréquence	condition de test	Face	DAS _{10g} (W/kg)		température de	distance					
	(MHz)			mesuré	limite	liquide (°C)	(mm)					
2712	882,4	QPSK, 12,2 kbps	Avant	0,724	2,0	22,4	5					
2788	897,6	QPSK, 12,2 kbps	Avant	0,794	2,0	22,4	5					
2863	912,6	QPSK, 12,2 kbps	Avant	0,790	2,0	22,4	5					
2788	897,6	QPSK, 12,2 kbps	Arrière	0,650	2,0	22,4	5					
2788	897,6	QPSK, 12,2 kbps	Gauche	0,463	2,0	22,4	5					
2788	897,6	QPSK, 12,2 kbps	Droit	0,441	2,0	22,4	5					
2788	897,6	QPSK, 12,2 kbps	Dessus	0,023	2,0	22,4	5					
2788	897,6	QPSK, 12,2 kbps	Dessous	0,571	2,0	22,4	5					

Tableau 8: Résultats des essais UMTS FDD VIII 900 MHz (DAS dans le corps)

	DAS _{10g} dans le corps UMTS FDD I 1950 MHz (moyennés sur une masse de 10g)										
canal	fréquence	condition de test	e test Face DAS _{10g} (W/kg) température de		distance						
Cariai	(MHz)	condition ac test	1 400	mesuré	limite	liquide (°C)	(mm)				
9750	1950,0	QPSK, 12,2 kbps	Avant	1,260	2,0	22,4	5				
9612	1922,4	QPSK, 12,2 kbps	Arrière	1,730	2,0	22,4	5				
9750	1950,0	QPSK, 12,2 kbps	Arrière	1,700	2,0	22,4	5				
9888	1977,6	QPSK, 12,2 kbps	Arrière	1,900	2,0	22,4	5				
9750	1950,0	QPSK, 12,2 kbps	Gauche	0,499	2,0	22,4	5				
9750	1950,0	QPSK, 12,2 kbps	Droit	0,119	2,0	22,4	5				
9750	1950,0	QPSK, 12,2 kbps	Dessus	0,062	2,0	22,4	5				
9750	1950,0	QPSK, 12,2 kbps	Dessous	0,578	2,0	22,4	5				

Tableau 9: Résultats des essais UMTS FDD I 2100/1900 MHz (DAS dans le corps)

	DAS dans le corps LTE FDD 20 800 MHz (moyennés sur une masse de 10g)											
fréquence/			condi	tion de t	est		DAS _{10q}		température			
canal	MHz	Face	BW MHz	RB size	RB offset	Mod. distance		mesuré	limite	de liquide		
24300	847	Avant	20	1	0	QPSK	5 mm	0,401 W/kg	2 W/kg	22,4 °C		
24250	842	Arrière	20	1	0	QPSK	5 mm	0,404 W/kg	2 W/kg	22,4 °C		
24300	847	Arrière	20	1	0	QPSK	5 mm	0,406 W/kg	2 W/kg	22,4 °C		
24350	852	Arrière	20	1	0	QPSK	5 mm	0,415 W/kg	2 W/kg	22,4 °C		
24300	847	Gauche	20	1	0	QPSK	5 mm	0,361 W/kg	2 W/kg	22,4 °C		
24300	847	Droit	20	1	0	QPSK	5 mm	0,340 W/kg	2 W/kg	22,4 °C		
24300	847	Dessus	20	1	0	QPSK	5 mm	0,025 W/kg	2 W/kg	22,4 °C		
24300	847	Dessous	20	1	0	QPSK	5 mm	0,297 W/kg	2 W/kg	22,4 °C		

Tableau 10: Résultats des essais LTE FDD 20 800 MHz (DAS dans le corps)

	DAS dans le corps LTE FDD 3 1800 MHz (moyennés sur une masse de 10g)										
	fréquence/		condition de test				.Patauaa	DAS _{10g}	l	température	
canal '	MHz	Face	BW MHz	RB size	RB offset	Mod.	distance	mesuré	limite	de liquide	
19575	1747.5	Avant	20	1	50	QPSK	5 mm	0,917 W/kg	2 W/kg	22,0 °C	
19300	1720.0	Arrière	20	1	50	QPSK	5 mm	0,948 W/kg	2 W/kg	22,0 °C	
19575	1747.5	Arrière	20	1	50	QPSK	5 mm	0,959 W/kg	2 W/kg	22,0 °C	
19850	1775.0	Arrière	20	1	50	QPSK	5 mm	0.992 W/kg	2 W/kg	22,0 °C	
19575	1747.5	Gauche	20	1	50	QPSK	5 mm	0,435 W/kg	2 W/kg	22,0 °C	
19575	1747.5	Droit	20	1	50	QPSK	5 mm	0,123 W/kg	2 W/kg	22,0 °C	
19575	1747.5	Dessus	20	1	50	QPSK	5 mm	0,035 W/kg	2 W/kg	22,0 °C	
19575	1747.5	Dessous	20	1	50	QPSK	5 mm	0,470 W/kg	2 W/kg	22,0 °C	

Tableau 11: Résultats des essais LTE FDD 3 1800 MHz (DAS dans le corps)

	DAS dans le corps LTE FDD 7 2600 MHz (moyennés sur une masse de 10g)										
	fréquence/	réquence/		condi	tion de t	est	Р. 4	DAS _{10g}	p,	température	
canal	MHz	Face	BW MHz	RB size	RB offset	Mod. distance		mesuré	limite	de liquide	
21100	2535.0	Avant	20	1	99	QPSK	5 mm	1,140 W/kg	2 W/kg	22,8 °C	
20850	2510.0	Arrière	20	1	99	QPSK	5 mm	1,640 W/kg	2 W/kg	22,8 °C	
21100	2535.0	Arrière	20	1	99	QPSK	5 mm	1,900 W/kg	2 W/kg	22,8 °C	
21350	2560.0	Arrière	20	1	99	QPSK	5 mm	1,810 W/kg	2 W/kg	22,8 °C	
21100	2535.0	Gauche	20	1	99	QPSK	5 mm	0,466 W/kg	2 W/kg	22,8 °C	
21100	2535.0	Droit	20	1	99	QPSK	5 mm	0,021 W/kg	2 W/kg	22,8 °C	
21100	2535.0	Dessus	20	1	99	QPSK	5 mm	0,060 W/kg	2 W/kg	22,8 °C	
21100	2535.0	Dessous	20	1	99	QPSK	5 mm	1,870 W/kg	2 W/kg	22,8 °C	

Tableau 12: Résultats des essais LTE FDD 7 2600 MHz (DAS dans le corps)

Note: Les fréquences hautes et basses ont été mesurées dans le cas le plus défavorable.

8 Instruments de mesure utilisés

Ce tableau donne une vue complète des équipements de mesure du DAS

Appareil	Туре	Fabricant	numéro de série	Dernier étalonnage	fréquence (mois)
Dosimetric E-Field Probe	ES3DV3	Schmid & Partner Engineering AG	3320	12.01.2017	12
Dosimetric E-Field Probe		Schmid & Partner Engineering AG	3944	23.08.2016	12
900 MHz System Validation Dipole	D900V2	Schmid & Partner Engineering AG	102	12.05.2015	24
1750 MHz System Validation Dipole	D1750V2	Schmid & Partner Engineering AG	1093	13.05.2015	24
1900 MHz System Validation Dipole	D1900V2	Schmid & Partner Engineering AG	5d009	13.05.2015	24
2600 MHz System Validation Dipole	D2600V2	Schmid & Partner Engineering AG	1040	11.08.2015	24
Data acquisition electronics	DAE3V1	Schmid & Partner Engineering AG	413	11.01.2017	12
Data acquisition electronics	DAE3V1	Schmid & Partner Engineering AG	477	11.05.2016	12
Software	DASY52 52.8.7	Schmid & Partner Engineering AG		N/A	
Phantom	SAM	Schmid & Partner Engineering AG		N/A	
Universal Radio Communication Tester	CMU 200	Rohde & Schwarz	106826	11.01.2015	24
Universal Radio Communication Tester	CMW 500	Rohde & Schwarz	102375	28.01.2015	24
Network Analyser 300 kHz to 6 GHz	8753ES	Hewlett Packard)*	US39174436	28.01.2016	24
Dielectric Probe Kit	85070C	Hewlett Packard	US99360146	N/A	12
Signal Generator	8671B	Hewlett Packard	2823A00656	31.01.2017	24
Amplifier		Amplifier Reasearch	20452	N/A	
Power Meter	NRP	Rohde & Schwarz	101367	31.01.2017	24
Power Meter Sensor		Rohde & Schwarz	100227	31.01.2017	12
Power Meter Sensor	NRP Z22	Rohde & Schwarz	100234	31.01.2017	12
Directional Coupler	778D	Hewlett Packard	19171	31.01.2017	12

^{* :} La sonde de l'analyseur de réseau est étalonnée avant chaque mesure de liquide en référence avec de l'air, de l'eau distillée et un court-circuit.

9 Observations

Aucune observation n'a été faite pendant les essais.

Annexe A: Vérification du système

Date/Time: 03.05.2017 08:11:09

SystemPerformanceCheck-D900 HSL 2017-05-03

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: UID 0, CW (0); Communication System Band: D900 (900.0 MHz); Frequency: 900

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 900 MHz; $\sigma = 0.971 \text{ S/m}$; $\epsilon_r = 40.277$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

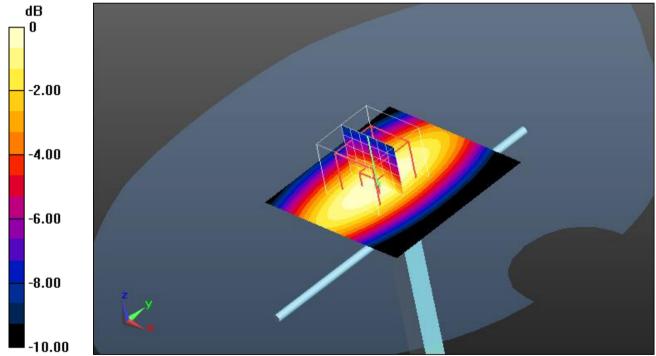
- Probe: ES3DV3 SN3320; ConvF(6.5, 6.5, 6.5); Calibrated: 12.01.2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2017
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL900/d=10mm, Pin=100mW/Area Scan (51x51x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value (interpolated) = 1.27 W/kg

HSL900/d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.452 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(10 g) = 0.684 W/kg

Maximum value (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

Additional information:

ambient temperature: 23.4°C; liquid temperature: 22.4°C

Date/Time: 04.05.2017 14:07:55

SystemPerformanceCheck-D900 HSL 2017-05-04

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: UID 0, CW (0); Communication System Band: D900 (900.0 MHz); Frequency: 900

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 900 MHz; $\sigma = 0.971$ S/m; $\epsilon_r = 40.277$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

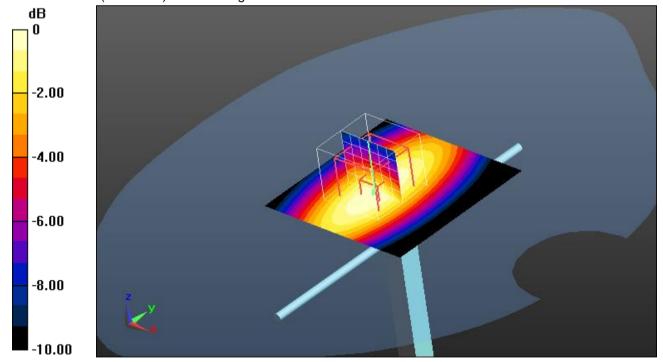
- Probe: ES3DV3 SN3320; ConvF(6.5, 6.5, 6.5); Calibrated: 12.01.2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2017
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL900/d=10mm, Pin=100mW/Area Scan (51x51x1): Interpolated grid: dx=1.500 mm,

dv=1.500 mm

Maximum value (interpolated) = 1.24 W/kg

HSL900/d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.704 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(10 q) = 0.679 W/kq

Maximum value (measured) = 1.24 W/kg

0 dB = 1.24 W/kg = 0.93 dBW/kg

Additional information:

ambient temperature: 23.4°C; liquid temperature: 22.4°C

Date/Time: 15.04.2017 08:00:19

SystemPerformanceCheck-D1750 HSL 2017-04-15

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1093

Communication System: UID 0, CW (0); Communication System Band: D1750 (1750.0 MHz); Frequency: 1750

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1750 MHz; σ = 1.346 S/m; ϵ_r = 39.222; ρ = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

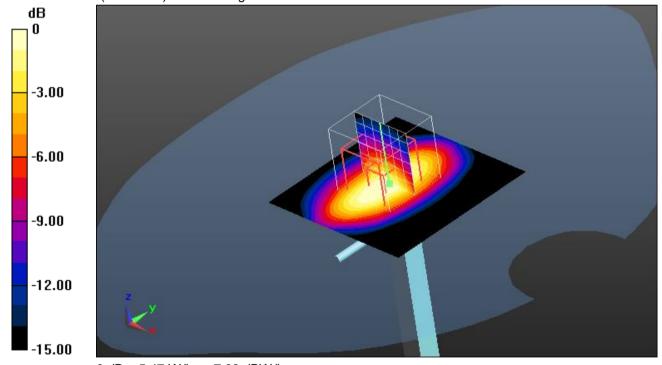
- Probe: EX3DV4 SN3944; ConvF(8.93, 8.93, 8.93); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL1750/d=10mm, Pin=100mW/Area Scan (51x51x1): Interpolated grid: dx=1.500 mm,

dv=1.500 mm

Maximum value (interpolated) = 6.14 W/kg

HSL1750/d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.190 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.59 W/kg

SAR(10 g) = 1.86 W/kg

Maximum value (measured) = 5.47 W/kg

0 dB = 5.47 W/kg = 7.38 dBW/kg

Additional information:

ambient temperature: 24.0°C; liquid temperature: 22.4°C

Date/Time: 21.04.2017 08:48:20

SystemPerformanceCheck-D1750 HSL 2017-04-21

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1093

Communication System: UID 0, CW (0); Communication System Band: D1750 (1750.0 MHz); Frequency: 1750

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1750 MHz; σ = 1.346 S/m; ϵ_r = 39.222; ρ = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

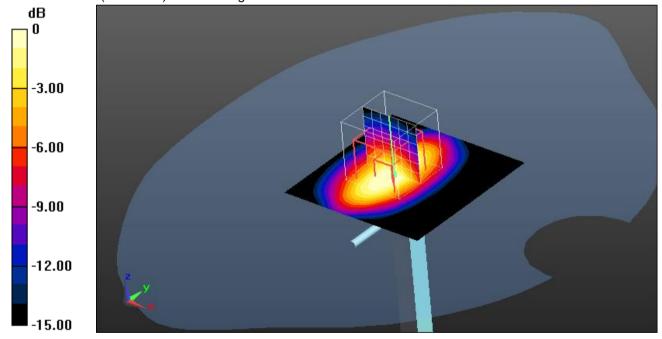
- Probe: EX3DV4 SN3944; ConvF(8.93, 8.93, 8.93); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL1750/d=10mm, Pin=100mW/Area Scan (51x51x1): Interpolated grid: dx=1.500 mm,

dv=1.500 mm

Maximum value (interpolated) = 6.30 W/kg

HSL1750/d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.873 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 7.08 W/kg

SAR(10 g) = 1.96 W/kg

Maximum value (measured) = 5.85 W/kg

0 dB = 5.85 W/kg = 7.67 dBW/kg

Additional information:

ambient temperature: 23.4°C; liquid temperature: 22.0°C

Date/Time: 11.04.2017 07:28:07

SystemPerformanceCheck-D1900 HSL 2017-04-11

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: UID 0, CW (0); Communication System Band: D1900 (1900.0 MHz); Frequency: 1900

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1900 MHz; σ = 1.395 S/m; ϵ_r = 39.803; ρ = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

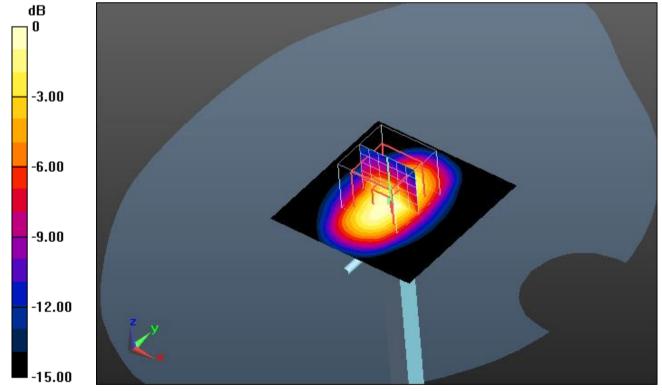
DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(8.61, 8.61, 8.61); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL1900/d=10mm, Pin=100 mW, dist=1.4mm/Area Scan (51x51x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm Maximum value (interpolated) = 6.60 W/kg

HSL1900/d=10mm, Pin=100 mW, dist=1.4mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 67.453 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 7.08 W/kg

SAR(10 g) = 1.99 W/kg

Maximum value (measured) = 5.94 W/kg

0 dB = 5.94 W/kg = 7.74 dBW/kg

Additional information:

ambient temperature: 23.1°C; liquid temperature: 22.4°C

Date/Time: 25.04.2017 08:26:57

SystemPerformanceCheck-D2600 HSL 2017-04-25

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1040

Communication System: UID 0, CW (0); Communication System Band: D2600 (2600.0 MHz); Frequency: 2600

MHz; Communication System PAR: 0 dB; PMF: 1

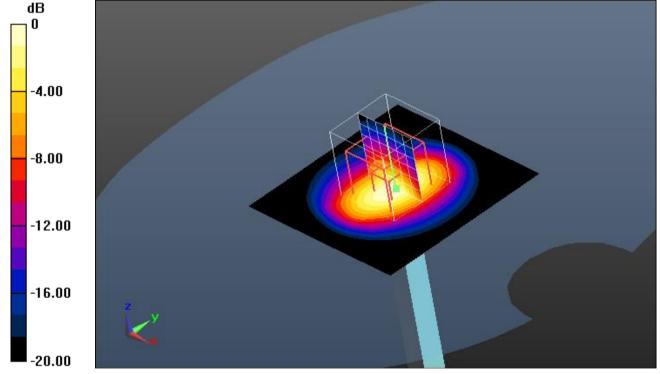
Medium parameters used: f = 2600 MHz; σ = 1.923 S/m; ϵ_r = 37.574; ρ = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.54, 7.54, 7.54); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL2450_2600/d=10mm, Pin=100 mW, dist=1.4mm/Area Scan (81x81x1):


Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value (interpolated) = 9.62 W/kg

HSL2450_2600/d=10mm, Pin=100 mW, dist=1.4mm/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 75.483 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 12.7 W/kg

SAR(10 g) = 2.59 W/kg

Maximum value (measured) = 10.1 W/kg

0 dB = 10.1 W/kg = 10.04 dBW/kg

Additional information:

ambient temperature: 23.2°C; liquid temperature: 22.8°C

Annexe B: Résultats des mesures

Date/Time: 03.05.2017 11:26:21

EN62209-2-GSM 900 body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, GSM/GPRS 4TS (0); Communication System Band: GSM 900; Frequency:

897.4 MHz; Communication System PAR: 3.01 dB; PMF: 1.41416

Medium parameters used (interpolated): f = 897.4 MHz; $\sigma = 0.969$ S/m; $\epsilon_r = 40.319$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

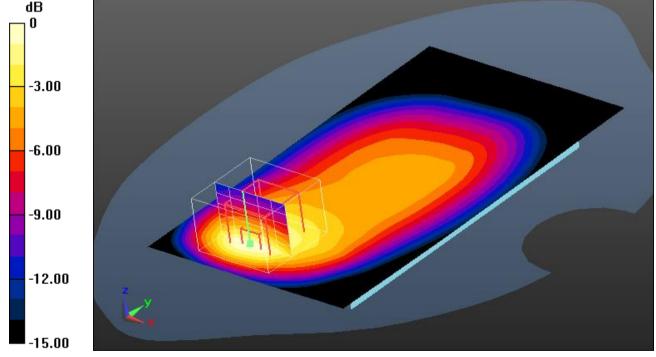
- Probe: ES3DV3 SN3320; ConvF(6.5, 6.5, 6.5); Calibrated: 12.01.2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2017
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL - 5mm/Front position - Middle/Area Scan (71x121x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm

Maximum value (interpolated) = 1.76 W/kg

HSL - 5mm/Front position - Middle/Zoom Scan (6x6x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 40.964 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 2.67 W/kg

SAR(10 g) = 0.891 W/kg

Maximum value (measured) = 1.77 W/kg

0 dB = 1.77 W/kg = 2.48 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 23.4°C; liquid temperature: 22.4°C

Date/Time: 15.04.2017 15:28:11

EN62209-2-GSM 1800 body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, GSM/GPRS 4TS (0); Communication System Band: GSM 1800; Frequency:

1784.8 MHz; Communication System PAR: 3.01 dB; PMF: 1.41416

Medium parameters used: f = 1785 MHz; $\sigma = 1.374 \text{ S/m}$; $\epsilon_r = 39.13$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

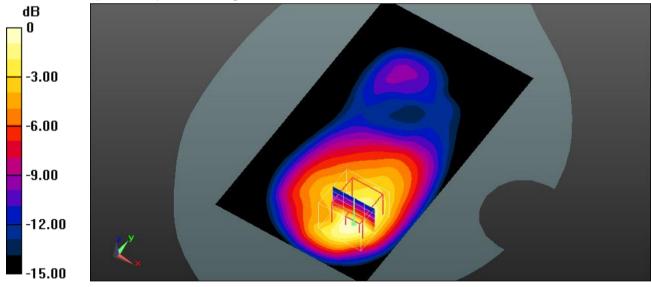
- Probe: EX3DV4 SN3944; ConvF(8.93, 8.93, 8.93); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL/Rear position - High 5 mm/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value (interpolated) = 2.67 W/kg

HSL/Rear position - High 5 mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 44.126 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 3.13 W/kg

SAR(10 q) = 0.941 W/kq

Maximum value (measured) = 2.59 W/kg

0 dB = 2.59 W/kg = 4.13 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 24.0°C; liquid temperature: 22.4°C

Date/Time: 04.05.2017 17:51:03

EN62209-2-UMTS FDD VIII body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD VIII; Frequency:

897.6 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 898 MHz; $\sigma = 0.97$ S/m; $\varepsilon_r = 40.316$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

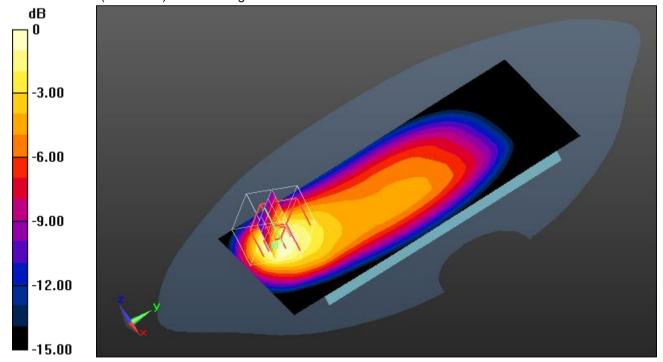
- Probe: ES3DV3 SN3320; ConvF(6.5, 6.5, 6.5); Calibrated: 12.01.2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2017
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL - 5mm/Front position - Middle/Area Scan (71x121x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm

Maximum value (interpolated) = 1.77 W/kg

HSL - 5mm/Front position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 39.389 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.42 W/kg

SAR(10 q) = 0.794 W/kq

Maximum value (measured) = 1.59 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 23.4°C; liquid temperature: 22.4°C

Date/Time: 11.04.2017 16:25:13

EN62209-2-UMTS FDD I body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD I; Frequency:

1977.6 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1978 MHz; $\sigma = 1.464$ S/m; $\epsilon_r = 39.459$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

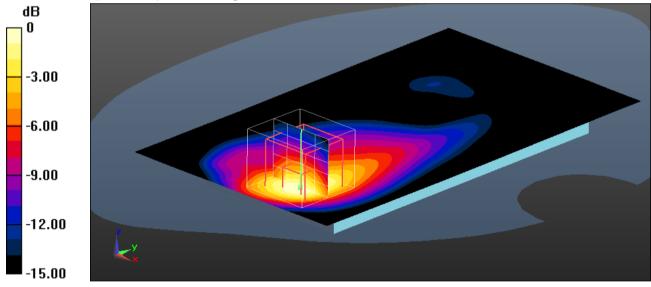
- Probe: EX3DV4 SN3944; ConvF(8.61, 8.61, 8.61); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL/Rear position - High - 5 mm/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value (interpolated) = 6.05 W/kg

HSL/Rear position - High - 5 mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 58.486 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 7.21 W/kg

SAR(10 q) = 1.9 W/kq

Maximum value (measured) = 5.79 W/kg

0 dB = 5.79 W/kg = 7.63 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 23.1°C; liquid temperature: 22.4°C

Date/Time: 04.05.2017 16:59:09

EN62209-2-LTE FDD 20 body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, LTE FDD (0); Communication System Band: LTE 20 (800MHz); Frequency: 852

MHz; Communication System PAR: 0 dB; PMF: 1

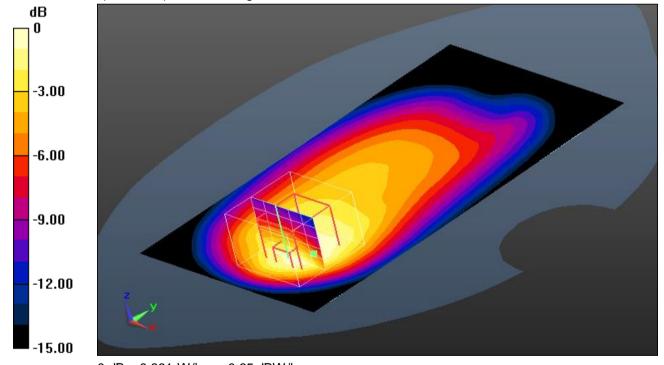
Medium parameters used: f = 852 MHz; σ = 0.925 S/m; ϵ_r = 40.868; ρ = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: ES3DV3 SN3320; ConvF(6.58, 6.58, 6.58); Calibrated: 12.01.2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2017
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL - 1RB - 0RB offset - 5mm/Rear position - High/Area Scan (71x121x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value (interpolated) = 0.902 W/kg

HSL - 1RB - 0RB offset - 5mm/Rear position - High/Zoom Scan (6x6x7)/Cube

0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 29.732 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.29 W/kg

SAR(10 g) = 0.415 W/kg

Maximum value (measured) = 0.861 W/kg

0 dB = 0.861 W/kg = -0.65 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 23.4°C; liquid temperature: 22.4°C

Date/Time: 21.04.2017 14:37:26

EN62209-2-LTE FDD 3 body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, LTE FDD (0); Communication System Band: LTE 3 (1800MHz); Frequency:

1775 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1775 MHz; $\sigma = 1.361$ S/m; $\varepsilon_r = 39.111$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

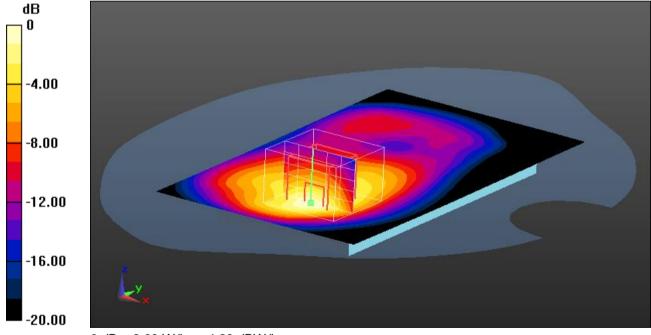
DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(8.93, 8.93, 8.93); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL - 1RB - 50RB offset/Rear position - High/Area Scan (71x121x1): Interpolated

arid: dx=1.500 mm. dv=1.500 mm

Maximum value (interpolated) = 2.78 W/kg


HSL - 1RB - 50RB offset/Rear position - High/Zoom Scan (6x6x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 42.989 V/m: Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.29 W/kg

SAR(10 g) = 0.992 W/kg

Maximum value (measured) = 2.68 W/kg

0 dB = 2.68 W/kg = 4.28 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 23.4°C; liquid temperature: 22.0°C

Date/Time: 25.04.2017 15:05:38

EN62209-2-LTE FDD 7 body

DUT: HTC; Type: DESIRE 650 (2PYR120); Serial: HT7231200053

Communication System: UID 0, LTE FDD (0); Communication System Band: LTE 7 (2600MHz); Frequency:

2535 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2535 MHz; $\sigma = 1.843$ S/m; $\varepsilon_r = 37.858$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

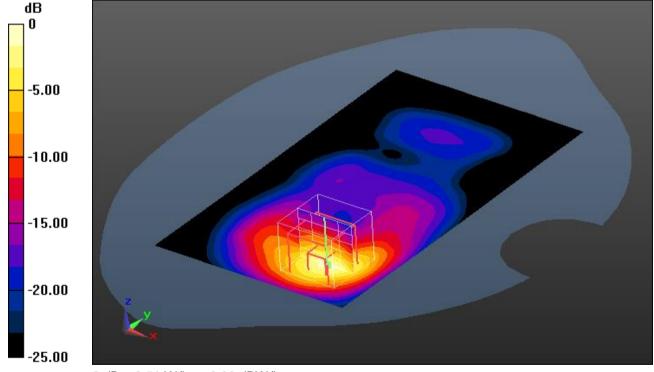
DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.54, 7.54, 7.54); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

HSL - 1RB - 99RB offset - 5mm/Rear position - Middle/Area Scan (71x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value (interpolated) = 6.37 W/kg

HSL - 1RB - 99RB offset - 5mm/Rear position - Middle/Zoom Scan


(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 59.057 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 11.1 W/kg

SAR(10 g) = 1.9 W/kg

Maximum value (measured) = 8.51 W/kg

0 dB = 8.51 W/kg = 9.30 dBW/kg

Additional information:

position or distance of DUT to the phantom: 5 mm ambient temperature: 23.2°C; liquid temperature: 22.8°C

Annexe C: Documentation photographique

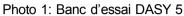


Photo 2: EST - vue de face

Photo 3: EST - vue de côté

Photo 4: EST - vue arrière

Photo 5: EST – vue arrière (étiquette)

Photo 6: EST - étiquette

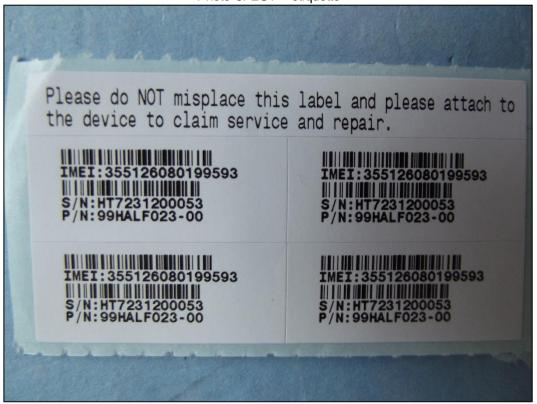
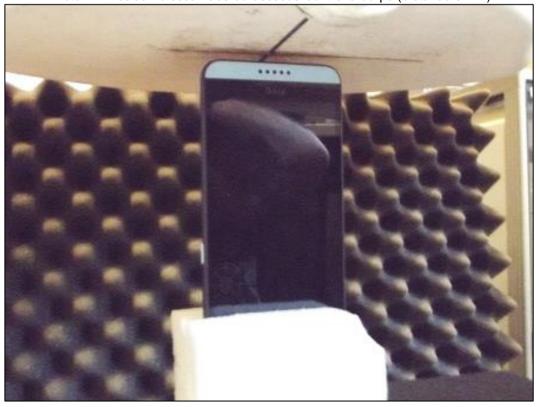
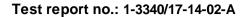


Photo 7: Position d'essai face avant contre le corps (distance 5 mm)

Photo 8: Position d'essai face arrière contre le corps (distance 5 mm)

Photo 9: Position d'essai face du côté gauche contre le corps (distance 5 mm)


Photo 10: Position d'essai face du côté droite contre le corps (distance 5 mm)



This is the contact a costal rade at a costal ostille to oripe (distance of thin)

Photo 11: Position d'essai face du dessus contre le corps (distance 5 mm)

Annexe D: Historique du document

Ve	ersion	Modifications	Date d'édition
		Edition initiale	22.05.2017
-A		Modification éditoriale	18.12.2017

Annexe E: Information supplémentaire

Glossaire

EST - Equipement Sous Test N/A - Ne s'applique pas

DAS - Débit d'Absorption Spécifique FDD - Duplex à Division de Fréquence

EOC - Coupleur Électro-Optique

SAM - Mannequin Anthropomorphe Spécifique

UMTS - L'Universal Mobile Telecommunications System

RMC - Canal de Mesure de Référence

HSL - Liquide Stimulant Tête Pin - Puissance d'entrée

PMF - Factor de Modulation de l'échantillon

LTE - Long Term Evolution (4G) Évolution à long terme

DUT - Appareil sous test